Survey of approaches for targeting quasars
暂无分享,去创建一个
[1] Richard L. White,et al. RADIO-SELECTED QUASARS IN THE SLOAN DIGITAL SKY SURVEY , 2009, 0909.4091.
[2] Y. Zhao,et al. Comparison of decision tree methods for finding active objects , 2007, 0708.4274.
[3] A. C. Becker,et al. QUASAR SELECTION BASED ON PHOTOMETRIC VARIABILITY , 2010, 1009.2081.
[4] Yong-Heng Zhao,et al. Classification in Multidimensional Parameter Space: Methods and Examples , 2003 .
[5] Nanbo Peng,et al. SDSS QUASARS IN THE WISE PRELIMINARY DATA RELEASE AND QUASAR CANDIDATE SELECTION WITH OPTICAL/INFRARED COLORS , 2012, 1204.6197.
[6] Patrick Petitjean,et al. Artificial neural networks for quasar selection and photometric redshift determination , 2010 .
[7] Gregory Dobler,et al. SELECTING QUASARS BY THEIR INTRINSIC VARIABILITY , 2010, 1002.2642.
[8] Adam D. Myers,et al. A SIMPLE LIKELIHOOD METHOD FOR QUASAR TARGET SELECTION , 2011, 1104.4995.
[9] David Schiminovich,et al. Statistical Properties of the GALEX-SDSS Matched Source Catalogs, and Classification of the UV Sources , 2006, astro-ph/0611926.
[10] Richard G. McMahon,et al. The Second APM UKST Colour Survey for z > 4 quasars , 2000, astro-ph/0012446.
[11] A. Myers,et al. THINK OUTSIDE THE COLOR BOX: PROBABILISTIC TARGET SELECTION AND THE SDSS-XDQSO QUASAR TARGETING CATALOG , 2010, 1011.6392.
[12] A. Szalay,et al. THE SLOAN DIGITAL SKY SURVEY QUASAR CATALOG. V. SEVENTH DATA RELEASE , 2010, 1004.1167.
[13] B. A. Weaver,et al. Variability selected high-redshift quasars on SDSS Stripe 82 , 2010, 1012.2391.
[14] Alexander G. Gray,et al. EFFICIENT PHOTOMETRIC SELECTION OF QUASARS FROM THE SLOAN DIGITAL SKY SURVEY. II. ∼1, 000, 000 QUASARS FROM DATA RELEASE 6 , 2004, The Astrophysical Journal Supplement Series.
[15] Xue-Bing Wu,et al. Quasar candidate selection and photometric redshift estimation based on SDSS and UKIDSS data , 2010, 1004.1756.
[16] W. M. Wood-Vasey,et al. The Sloan Digital Sky Survey quasar catalog: ninth data release , 2012, 1210.5166.
[17] Pavlos Protopapas,et al. QUASI-STELLAR OBJECT SELECTION ALGORITHM USING TIME VARIABILITY AND MACHINE LEARNING: SELECTION OF 1620 QUASI-STELLAR OBJECT CANDIDATES FROM MACHO LARGE MAGELLANIC CLOUD DATABASE , 2011 .
[18] Alexander G. Gray,et al. EIGHT-DIMENSIONAL MID-INFRARED/OPTICAL BAYESIAN QUASAR SELECTION , 2008, 0810.3567.
[19] E. al.,et al. The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.
[20] Heidelberg,et al. Finding rare objects and building pure samples: Probabilistic quasar classification from low resolution Gaia spectra , 2008, 0809.3373.
[21] Jean Surdej,et al. Identification and redshift determination of quasi-stellar objects with medium-band photometry: application to Gaia , 2006 .
[22] Cambridge,et al. Luminous K-band Selected Quasars from UKIDSS , 2008, 0802.3650.
[23] Xiaohui Fan. Simulation of Stellar Objects in SDSS Color Space , 1999 .
[24] Technology,et al. A small-area faint KX redshift survey for QSOs in the ESO Imaging Survey Chandra Deep Field South , 2001, astro-ph/0107451.
[25] Yong-Heng Zhao,et al. Support vector machines and kd-tree for separating quasars from large survey data bases , 2008 .
[26] Chicago,et al. Colors of 2625 Quasars at 0 < z < 5 Measured in the Sloan Digital Sky Survey Photometric System , 2000, astro-ph/0012449.
[27] Nathaniel R. Butler,et al. OPTIMAL TIME-SERIES SELECTION OF QUASARS , 2010, 1008.3143.
[28] Alexander G. Gray,et al. Efficient photometric selection of quasars from the sloan digital sky survey: 100,000 z < 3 quasars from data release one , 2004 .
[29] Yanxia Zhang,et al. Automated clustering algorithms for classification of astronomical objects , 2004, astro-ph/0403431.
[30] Nanbo Peng,et al. Selecting Quasar Candidates by a SVM Classification System , 2012, 1204.6354.
[31] Alexander S. Szalay,et al. RANDOM FORESTS FOR PHOTOMETRIC REDSHIFTS , 2010 .
[32] Ran Wang,et al. DISCOVERING THE MISSING 2.2 < z < 3 QUASARS BY COMBINING OPTICAL VARIABILITY AND OPTICAL/NEAR-INFRARED COLORS , 2011, 1107.0646.
[33] N. Ross,et al. NEAR-INFRARED PHOTOMETRIC PROPERTIES OF 130,000 QUASARS: AN SDSS–UKIDSS-MATCHED CATALOG , 2010, 1012.4187.
[34] Yong-Heng Zhao,et al. Random forest algorithm for classification of multiwavelength data , 2009 .
[35] M. SubbaRao,et al. Spectroscopic Target Selection in the Sloan Digital Sky Survey: The Quasar Sample , 2002, astro-ph/0202251.
[36] Ninan Sajeeth Philip,et al. Photometric Determination of Quasar Candidates , 2009 .
[37] David J. Miller,et al. Objective Subclass Determination of Sloan Digital Sky Survey Spectroscopically Unclassified Objects , 2005, astro-ph/0512119.
[38] R. Carballo,et al. Use of Neural Networks for the Identification of New z > 3.6 QSOs from FIRST–SDSS DR5 , 2008, 0809.0547.
[39] John B. Hutchings,et al. A CATALOG OF 19,100 QUASI-STELLAR OBJECT CANDIDATES WITH REDSHIFT 0.5-1.5* , 2010 .
[40] L. Bianchi,et al. QSOs in the Combined SDSS/GALEX Database , 2008, 0803.1177.
[41] R. Pello,et al. Quasar Candidate Multicolor Selection Technique: a different approach , 2000 .