Two new classification theorems on residuated monoids

We present two very recent Mostert-Shields style classification theorems on residuated l-monoids along with some related results in sub structural logics.

[1]  Ronald R. Yager,et al.  Uninorm aggregation operators , 1996, Fuzzy Sets Syst..

[2]  S. Jenei Structure Of Girard Monoids On [0,1] , 2003 .

[3]  S. Jenei On the Geometry of Associativity , 2007 .

[4]  Bernard De Baets,et al.  The triple rotation method for constructing t-norms , 2007, Fuzzy Sets Syst..

[5]  H. Ono,et al.  Residuated Lattices: An Algebraic Glimpse at Substructural Logics, Volume 151 , 2007 .

[6]  Franco Montagna,et al.  A Proof of Standard Completeness for Esteva and Godo's Logic MTL , 2002, Stud Logica.

[7]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[8]  Lluis Godo,et al.  Basic Fuzzy Logic is the logic of continuous t-norms and their residua , 2000, Soft Comput..

[9]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[10]  Sándor Jenei,et al.  On the reflection invariance of residuated chains , 2009, Ann. Pure Appl. Log..

[11]  Sándor Jenei,et al.  On the relationship between the rotation construction and ordered Abelian groups , 2010, Fuzzy Sets Syst..

[12]  Franco Montagna,et al.  Substructural fuzzy logics , 2007, Journal of Symbolic Logic.

[13]  Sándor Jenei,et al.  Structure of left-continuous triangular norms with strong induced negations (I) Rotation construction , 2000, J. Appl. Non Class. Logics.

[14]  P. Mostert,et al.  On the Structure of Semigroups on a Compact Manifold With Boundary , 1957 .

[15]  Sándor Jenei On the structure of rotation-invariant semigroups , 2003, Arch. Math. Log..

[16]  A. H. Clifford,et al.  Naturally Totally Ordered Commutative Semigroups , 1954 .

[17]  Sándor Jenei Erratum to "On the reflection invariance of residuated chains" [Ann. Pure Appl. Logic 161 (2009) 220-227] , 2010, Ann. Pure Appl. Log..

[18]  R. P. Dilworth,et al.  Residuated Lattices. , 1938, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Sándor Jenei,et al.  Structure of left-continuous triangular norms with strong induced negations. (III): Construction and decomposition , 2002, Fuzzy Sets Syst..

[20]  Hiroakira Ono,et al.  Logics without the contraction rule , 1985, Journal of Symbolic Logic.

[21]  D. Mundici,et al.  Algebraic Foundations of Many-Valued Reasoning , 1999 .

[22]  Hiroakira Ono,et al.  Structural Rules and a Logical Hierarchy , 1990 .

[23]  Bernard De Baets,et al.  On the structure of left-continuous t-norms that have a continuous contour line , 2007, Fuzzy Sets Syst..