Performance of High Energy Density Symmetric Supercapacitor Based on Sputtered MnO2 Nanorods

Here, we demonstrate the fabrication of binder free and very efficient supercapacitor electrodes based on MnO2 nanorods on silver (Ag) coated porous anodic aluminum oxide (AAO) substrate in a very simple way by DC magnetron sputtering. The Ag coated porous AAO substrate acts as excellent current collector and also enhances high specific capacitance of MnO2 up to ∼796 F/g. A symmetric supercapacitor device in form of α-MnO2 nanorods/Ag/AAO electrode has been fabricated, characterized and its performance has been investigated in detail. The binder free supercapacitor device delivered a high capacitance (132 F/g), good cycling ability (95.52 % capacitance retention after 3000 cycles), high energy density (26.4 Wh/kg), and also a high power density (∼36 kW/kg at 6 Wh/kg) in a voltage range of 1.3 V. These observed excellent electrochemical performances of the present MnO2 nanorods based device, suggest it tremendous potential as supercapacitor electrodes in energy storage applications.

[1]  Fashen Li,et al.  Mesoporous nanowire array architecture of manganese dioxide for electrochemical capacitor applications. , 2009, Chemical communications.

[2]  Jeffrey W Long,et al.  Incorporation of homogeneous, nanoscale MnO2 within ultraporous carbon structures via self-limiting electroless deposition: implications for electrochemical capacitors. , 2007, Nano letters.

[3]  Zhao‐Qing Liu,et al.  Anion-assisted one-pot synthesis of 1D magnetic α- and β-MnO2 nanostructures for recyclable water treatment application , 2015 .

[4]  Arava Leela Mohana Reddy,et al.  Coaxial MnO2/carbon nanotube array electrodes for high-performance lithium batteries. , 2009, Nano letters.

[5]  Jianlin Shi,et al.  MnO2-embedded-in-mesoporous-carbon-wall structure for use as electrochemical capacitors. , 2006, The journal of physical chemistry. B.

[6]  Ye Hou,et al.  Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes. , 2010, Nano letters.

[7]  Zhiqiang Niu,et al.  All‐Solid‐State Flexible Ultrathin Micro‐Supercapacitors Based on Graphene , 2013, Advanced materials.

[8]  Yuanyuan Li,et al.  Construction of high-capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor. , 2013, Nano letters.

[9]  R. Chandra,et al.  Highly sensitive and selective hydrogen gas sensor using sputtered grown Pd decorated MnO2 nanowalls , 2016 .

[10]  Qing Liu,et al.  Self-Assembly of Mesoporous Nanotubes Assembled from Interwoven Ultrathin Birnessite-type MnO2 Nanosheets for Asymmetric Supercapacitors , 2014, Scientific Reports.

[11]  Gil S. Lee,et al.  Synthesis and electrochemical properties of spin-capable carbon nanotube sheet/MnO(x) composites for high-performance energy storage devices. , 2011, Nano letters.

[12]  Meilin Liu,et al.  Phase evolution of an alpha MnO2-based electrode for pseudo-capacitors probed by in operando Raman spectroscopy , 2014 .

[13]  M. Anderson,et al.  Novel electrode materials for electrochemical capacitors: Part II. Material characterization of sol-gel-derived and electrodeposited manganese dioxide thin films , 2000 .

[14]  Jun Zhou,et al.  Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure. , 2012, ACS nano.

[15]  F. Wei,et al.  Asymmetric Supercapacitors Based on Graphene/MnO2 and Activated Carbon Nanofiber Electrodes with High Power and Energy Density , 2011 .

[16]  Yong Ding,et al.  Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. , 2014, Nano letters.

[17]  Zhennan Gu,et al.  Growth of manganese oxide nanoflowers on vertically-aligned carbon nanotube arrays for high-rate electrochemical capacitive energy storage. , 2008, Nano letters.

[18]  V. Pavlínek,et al.  MnO2 nanoflake/polyaniline nanorod hybrid nanostructures on graphene paper for high-performance flexible supercapacitor electrodes , 2015 .

[19]  John R. Miller,et al.  Electrochemical Capacitors for Energy Management , 2008, Science.

[20]  J. Jang,et al.  Hydrous RuO2/carbon black nanocomposites with 3D porous structure by novel incipient wetness method for supercapacitors , 2006 .

[21]  D. D. Meng,et al.  Scalable high-power redox capacitors with aligned nanoforests of crystalline MnO₂ nanorods by high voltage electrophoretic deposition. , 2013, ACS nano.

[22]  Branko N. Popov,et al.  Synthesis and Characterization of MnO2-Based Mixed Oxides as Supercapacitors , 2003 .

[23]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[24]  Yunhui Huang,et al.  VO2/TiO2 Nanosponges as Binder-Free Electrodes for High-Performance Supercapacitors , 2015, Scientific Reports.

[25]  Yong Lei,et al.  Template assisted fabrication of free-standing MnO2 nanotube and nanowire arrays and their application in supercapacitors , 2014 .

[26]  Wenwen Liu,et al.  High-performance microsupercapacitors based on two-dimensional graphene/manganese dioxide/silver nanowire ternary hybrid film. , 2015, ACS nano.

[27]  Chao Li,et al.  Flexible, sandwich-like Ag-nanowire/PEDOT:PSS-nanopillar/MnO2 high performance supercapacitors , 2014 .

[28]  Maria Forsyth,et al.  Electrochemical performance of polyaniline nanofibres and polyaniline/multi-walled carbon nanotube composite as an electrode material for aqueous redox supercapacitors , 2007 .

[29]  Yulin Deng,et al.  High Performance All-solid Supercapacitors Based on the Network of Ultralong Manganese dioxide/Polyaniline Coaxial Nanowires , 2015, Scientific Reports.

[30]  Meilin Liu,et al.  Nickel-cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors. , 2013, Nano letters.

[31]  Peter G Bruce,et al.  Alpha-MnO2 nanowires: a catalyst for the O2 electrode in rechargeable lithium batteries. , 2008, Angewandte Chemie.

[32]  Ramana G. Reddy,et al.  Synthesis and electrochemical characterization of amorphous MnO2 electrochemical capacitor electrode material , 2004 .

[33]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[34]  Feng Li,et al.  Anchoring Hydrous RuO2 on Graphene Sheets for High‐Performance Electrochemical Capacitors , 2010 .

[35]  Mati Horprathum,et al.  Silver nanoparticles deposited on anodic aluminum oxide template using magnetron sputtering for surface-enhanced Raman scattering substrate , 2010 .

[36]  Peihua Huang,et al.  Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. , 2010, Nature nanotechnology.

[37]  Chandrakant D. Lokhande,et al.  A symmetric MnO2/MnO2 flexible solid state supercapacitor operating at 1.6 V with aqueous gel electrolyte , 2016 .

[38]  Feng Li,et al.  High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. , 2010, ACS nano.

[39]  Zhong Lin Wang,et al.  Fiber supercapacitors made of nanowire-fiber hybrid structures for wearable/flexible energy storage. , 2011, Angewandte Chemie.

[40]  Guowei Yang,et al.  All-Solid-State Symmetric Supercapacitor Based on Co3O4 Nanoparticles on Vertically Aligned Graphene. , 2015, ACS nano.

[41]  Hua Zhang,et al.  Preparation of novel 3D graphene networks for supercapacitor applications. , 2011, Small.

[42]  H. Alshareef,et al.  Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance. , 2012, Nano letters.

[43]  Teng Zhai,et al.  Manganese dioxide nanorod arrays on carbon fabric for flexible solid-state supercapacitors , 2013 .

[44]  Chandrakant D. Lokhande,et al.  Low-cost flexible supercapacitors with high-energy density based on nanostructured MnO2 and Fe2O3 thin films directly fabricated onto stainless steel , 2015, Scientific Reports.

[45]  Pooi See Lee,et al.  Facile coating of manganese oxide on tin oxide nanowires with high-performance capacitive behavior. , 2010, ACS Nano.

[46]  Jamie Gomez,et al.  High-performance binder-free Co–Mn composite oxide supercapacitor electrode , 2013 .

[47]  Prabhakar Rai,et al.  3D urchin-shaped Ni3(VO4)2 hollow nanospheres for high-performance asymmetric supercapacitor applications , 2016 .

[48]  Fei Li,et al.  MnO2-based nanostructures for high-performance supercapacitors , 2015 .

[49]  Kwang S. Kim,et al.  Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices , 2012 .

[50]  Mathieu Toupin,et al.  Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor , 2004 .

[51]  Huaping Zhao,et al.  Self‐Supported Metallic Nanopore Arrays with Highly Oriented Nanoporous Structures as Ideally Nanostructured Electrodes for Supercapacitor Applications , 2014, Advanced materials.

[52]  Yi Shi,et al.  Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes. , 2010, ACS nano.

[53]  Michael M. Thackeray,et al.  Manganese oxides for lithium batteries , 1997 .

[54]  Hyun-Wook Lee,et al.  Ultrathin spinel LiMn2O4 nanowires as high power cathode materials for Li-ion batteries. , 2010, Nano letters.

[55]  Songtao Lu,et al.  Flexible asymmetric supercapacitors with high energy and high power density in aqueous electrolytes. , 2013, Nanoscale.

[56]  R. Chandra,et al.  Synthesis and structural characterization of nanostructured copper , 2009 .

[57]  G. Barbastathis,et al.  Origami fabrication of nanostructured, three-dimensional devices: Electrochemical capacitors with carbon electrodes , 2006 .

[58]  Candace K. Chan,et al.  Printable thin film supercapacitors using single-walled carbon nanotubes. , 2009, Nano letters.

[59]  Zhenxing Zhang,et al.  Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. , 2013, ACS nano.

[60]  Low-Temperature Sputtering Deposition of Aligned Polycrystalline CaCu3Ti4O12 Nanorods , 2010 .