Simulating nonlinear cosmological structure formation with massive neutrinos

We present a new method for simulating cosmologies that contain massive particles with thermal free streaming motion, such as massive neutrinos or warm/hot dark matter. This method combines particle and fluid descriptions of the thermal species to eliminate the shot noise known to plague conventional N-body simulations. We describe this method in detail, along with results for a number of test cases to validate our method, and check its range of applicability. Using this method, we demonstrate that massive neutrinos can produce a significant scale-dependence in the large-scale biasing of deep voids in the matter field. We show that this scale-dependence may be quantitatively understood using an extremely simple spherical expansion model which reproduces the behavior of the void bias for different neutrino parameters.

[1]  E. Jennings,et al.  The abundance of voids and the excursion set formalism , 2013, 1304.6087.

[2]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[3]  Durham,et al.  The Aquarius Project: the subhaloes of galactic haloes , 2008, 0809.0898.

[4]  S. Hannestad,et al.  Resolving Cosmic Neutrino Structure: A Hybrid Neutrino N-body Scheme , 2009, 0908.1969.

[5]  J. Ostriker,et al.  Halo Formation in Warm Dark Matter Models , 2000, astro-ph/0010389.

[6]  S. Borgani,et al.  Cosmology with massive neutrinos III: the halo mass function and an application to galaxy clusters , 2013, 1311.1514.

[7]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection , 1977 .

[8]  M. Loverde Neutrino mass without cosmic variance , 2016, 1602.08108.

[9]  Zurich,et al.  The warm dark matter halo mass function below the cut-off scale , 2013, 1304.2406.

[10]  Y. Zel’dovich,et al.  Astrophysical implications of the neutrino rest mass. II. The density-perturbation spectrum and small-scale fluctuations in the microwave background , 1980 .

[11]  L. Y. Wang,et al.  Observation of electron-antineutrino disappearance at Daya Bay. , 2012, Physical review letters.

[12]  M. Archidiacono,et al.  Efficient calculation of cosmological neutrino clustering in the non-linear regime , 2015, 1510.02907.

[13]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[14]  J. Vieira,et al.  DARK MATTER SUBSTRUCTURE DETECTION USING SPATIALLY RESOLVED SPECTROSCOPY OF LENSED DUSTY GALAXIES , 2012, 1210.4562.

[15]  Formation and Structure of Halos in a Warm Dark Matter Cosmology , 2000, astro-ph/0010525.

[16]  S Hatakeyama,et al.  First results from KamLAND: evidence for reactor antineutrino disappearance. , 2003, Physical review letters.

[17]  Measurement of neutrino oscillation by the K2K experiment , 2006, hep-ex/0606032.

[18]  J. Lesgourgues,et al.  The Cosmic Linear Anisotropy Solving System (CLASS) IV: efficient implementation of non-cold relics , 2011, 1104.2935.

[19]  J. Read,et al.  Novel Adaptive softening for collisionless N-body simulations: eliminating spurious haloes , 2015, 1503.02689.

[20]  S. Hannestad,et al.  Neutrinos in non-linear structure formation — the effect on halo properties , 2010, 1004.4105.

[21]  Francisco Prada,et al.  Where Are the Missing Galactic Satellites? , 1999, astro-ph/9901240.

[22]  J. Monaghan Smoothed particle hydrodynamics , 2005 .

[23]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[24]  Francisco Villaescusa-Navarro,et al.  Cosmology with massive neutrinos I: towards a realistic modeling of the relation between matter, haloes and galaxies , 2013, 1311.0866.

[25]  Michael S. Warren,et al.  THE LARGE-SCALE BIAS OF DARK MATTER HALOS: NUMERICAL CALIBRATION AND MODEL TESTS , 2010, 1001.3162.

[26]  C. Frenk,et al.  The Aquarius Project : the subhalos of galactic halos , 2008 .

[27]  F. Villaescusa-Navarro,et al.  Cores and cusps in warm dark matter halos , 2010, 1010.3008.

[28]  R. B. Barreiro,et al.  Planck 2013 results , 2014 .

[29]  Ijaz Ahmed Physics Review Letters , 2014 .

[30]  M. Viel,et al.  Cosmology with massive neutrinos II: on the universality of the halo mass function and bias , 2013, 1311.1212.

[31]  Michael S. Warren,et al.  Robustness of Cosmological Simulations. I. Large-Scale Structure , 2004, astro-ph/0411795.

[32]  W. J. Blok,et al.  The Core-Cusp Problem , 2009, 0910.3538.

[33]  J. Lesgourgues,et al.  The Cosmic Linear Anisotropy Solving System (CLASS). Part II: Approximation schemes , 2011, 1104.2933.

[34]  A. Harten High Resolution Schemes for Hyperbolic Conservation Laws , 2017 .

[35]  J. Stadel,et al.  Clumps and streams in the local dark matter distribution , 2008, Nature.

[36]  Michael S. Warren,et al.  The cosmic code comparison project , 2007, 0706.1270.

[37]  J. Harnois-Déraps,et al.  Precision reconstruction of the cold dark matter-neutrino relative velocity from N -body simulations , 2015, 1503.07480.

[38]  A. Kashlinsky,et al.  Large-scale structure in the Universe , 1991, Nature.

[39]  J. Peacock,et al.  Simulations of the formation, evolution and clustering of galaxies and quasars , 2005, Nature.

[40]  M. Zaldarriaga,et al.  Connection between Newtonian simulations and general relativity , 2011, 1101.3555.

[41]  D. Huterer,et al.  Imprints of primordial non-Gaussianities on large-scale structure: Scale-dependent bias and abundance of virialized objects , 2007, 0710.4560.

[42]  M. Viel,et al.  Voids in massive neutrino cosmologies , 2015, 1506.03088.

[43]  M. Zemp The Structure of Cold Dark Matter Halos: Recent Insights from High Resolution Simulations , 2009, 0909.4298.

[44]  S. White,et al.  The age dependence of halo clustering , 2005, astro-ph/0506510.

[45]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[46]  Joachim Stadel,et al.  Quantifying the heart of darkness with GHALO – a multibillion particle simulation of a galactic halo , 2008, 0808.2981.

[47]  F. Walter,et al.  HIGH-RESOLUTION ROTATION CURVES AND GALAXY MASS MODELS FROM THINGS , 2008, 0810.2100.

[48]  S. White,et al.  Galaxy Formation and Evolution , 2010 .

[49]  J. Lesgourgues,et al.  The Cosmic Linear Anisotropy Solving System (CLASS) I: Overview , 2011, 1104.2932.

[50]  H. M. P. Couchman,et al.  The mass function of dark matter haloes , 2000, astro-ph/0005260.

[51]  J. Frieman,et al.  Cosmic voids and void lensing in the Dark Energy Survey Science Verification data , 2016, 1605.03982.

[52]  Discreteness effects in simulations of hot/warm dark matter , 2007, astro-ph/0702575.

[53]  Peter Goldreich,et al.  Self-similar spherical voids in an expanding universe , 1984 .

[54]  R. Wilson Modern Cosmology , 2004 .

[55]  John E. Carlstrom,et al.  DETECTION OF LENSING SUBSTRUCTURE USING ALMA OBSERVATIONS OF THE DUSTY GALAXY SDP.81 , 2016, 1601.01388.

[56]  Alexander S. Szalay,et al.  COSMOLOGICAL IMPACT OF THE NEUTRINO REST MASS , 1981 .

[57]  George Lake,et al.  Dark Matter Substructure within Galactic Halos , 1999, astro-ph/9907411.

[58]  P. Roe CHARACTERISTIC-BASED SCHEMES FOR THE EULER EQUATIONS , 1986 .

[59]  Michael S. Warren,et al.  Toward a Halo Mass Function for Precision Cosmology: The Limits of Universality , 2008, 0803.2706.

[60]  Ben Moore,et al.  The structure and evolution of cold dark matter halos , 2009, 0906.4340.

[61]  B. Jain,et al.  Clustering and bias measurements of SDSS voids , 2015, 1507.08031.

[62]  J. Farine,et al.  Measurement of the rate of ve + d → p + p + e- interactions produced by 8B solar neutrinos at the sudbury neutrino observatory , 2001 .

[63]  S. Hannestad,et al.  Grid based linear neutrino perturbations in cosmological N-body simulations , 2008, 0812.3149.

[64]  A. Cimatti,et al.  Effects of massive neutrinos on the large-scale structure of the Universe , 2011, 1103.0278.

[65]  Michael S. Warren,et al.  Precision Determination of the Mass Function of Dark Matter Halos , 2005, astro-ph/0506395.

[66]  M. Loverde Halo bias in mixed dark matter cosmologies , 2014, 1405.4855.

[67]  J. Lesgourgues,et al.  Neutrino cosmology and Planck , 2014, 1404.1740.

[68]  S. Kim,et al.  Evidence for oscillation of atmospheric neutrinos , 1998 .

[69]  C. A. Oxborrow,et al.  Planck 2013 results. XVI. Cosmological parameters , 2013, 1303.5076.

[70]  C. Carbone,et al.  DEMNUni: ISW, Rees-Sciama, and weak-lensing in the presence of massive neutrinos , 2016, 1605.02024.

[71]  C. Carbone,et al.  DEMNUni: the clustering of large-scale structures in the presence of massive neutrinos , 2015, 1505.07148.

[72]  B. Jain,et al.  Cosmological Tests of Gravity , 2010, 1004.3294.

[73]  A. Pope,et al.  Redshift-space distortions in massive neutrino and evolving dark energy cosmologies , 2015, 1506.07526.

[74]  D. Weinberg,et al.  Constraints on the Effects of Locally Biased Galaxy Formation , 1997, astro-ph/9712192.

[75]  M. Viel,et al.  Neutrino signatures on the high-transmission regions of the Lyman $\boldsymbol {\alpha }$ forest , 2011, 1106.2543.

[76]  Voids in a ΛCDM universe , 2004, astro-ph/0409162.

[77]  M. Viel,et al.  Non-linear evolution of the cosmic neutrino background , 2012, 1212.4855.

[78]  S. Bird,et al.  An efficient implementation of massive neutrinos in non-linear structure formation simulations , 2012, 1209.0461.