Sequential fractional order Neutral functional Integro differential equations on time scales with Caputo fractional operator over Banach spaces

In this work, we scrutinize the existence and uniqueness of the solution to the Integro differential equations for the Caputo fractional derivative on the time scale. We derive the solution of the neutral fractional differential equations along the finite delay conditions. The fixed point theory is demonstrated, and the solution depends upon the fixed point theorems: Banach contraction principle, nonlinear alternative for Leray-Schauder type, and Krasnoselskii fixed point theorem.

[1]  C. Ravichandran,et al.  New existence results on nonlocal neutral fractional differential equation in concepts of Caputo derivative with impulsive conditions , 2022, Chaos, Solitons & Fractals.

[2]  K. Nisar,et al.  Study on existence and data dependence results for fractional order differential equations , 2022, Chaos, Solitons & Fractals.

[3]  Manju Mohan,et al.  Results on neutral differential equation of sobolev type with nonlocal conditions , 2022, Chaos, Solitons & Fractals.

[4]  T. Saeed,et al.  Estimating Drift Parameters in a Sub-Fractional Vasicek-Type Process , 2022, Entropy.

[5]  M. Benchohra,et al.  Neutral functional sequential differential equations with Caputo fractional derivative on time scales , 2022, Fixed Point Theory and Algorithms for Sciences and Engineering.

[6]  R. Bantan,et al.  Mixed Neutral Caputo Fractional Stochastic Evolution Equations with Infinite Delay: Existence, Uniqueness and Averaging Principle , 2022, Fractal and Fractional.

[7]  H. M. Baskonus,et al.  Fractional Order Modeling the Gemini Virus in Capsicum annuum with Optimal Control , 2022, Fractal and Fractional.

[8]  Devendra Kumar,et al.  New approach on controllability of Hilfer fractional derivatives with nondense domain , 2022, AIMS Mathematics.

[9]  R. Bantan,et al.  Mixed Caputo Fractional Neutral Stochastic Differential Equations with Impulses and Variable Delay , 2021, Fractal and Fractional.

[10]  A. Zeb,et al.  A Special Study of the Mixed Weighted Fractional Brownian Motion , 2021, Fractal and Fractional.

[11]  M. R. Sidi Ammi,et al.  Existence and uniqueness results on time scales for fractional nonlocal thermistor problem in the conformable sense , 2021 .

[12]  Almushaira Mustafa,et al.  Stochastic Volterra integral equations with jumps and the strong superconvergence of the Euler-Maruyama approximation , 2021, J. Comput. Appl. Math..

[13]  K. Nisar,et al.  Mathematical model for spreading of COVID‐19 virus with the Mittag–Leffler kernel , 2020, Numerical methods for partial differential equations.

[14]  X. Shu,et al.  The existence and Hyers-Ulam stability of solution for almost periodical fractional stochastic differential equation with fBm , 2020 .

[15]  R. Agarwal,et al.  F-contraction mappings on metric-like spaces in connection with integral equations on time scales , 2020, Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas.

[16]  F. Jarad,et al.  Nonlinear generalized fractional differential equations with generalized fractional integral conditions , 2020, Journal of Taibah University for Science.

[17]  S. Georgiev Functional Dynamic Equations on Time Scales , 2019 .

[18]  S. Abbas,et al.  Implicit Fractional Differential and Integral Equations: Existence and Stability , 2018 .

[19]  S. Abbas,et al.  A survey on Hadamard and Hilfer fractional differential equations: Analysis and stability , 2017 .

[20]  A. Alsaedi,et al.  Existence and Ulam stability for fractional differential equations of Hilfer-Hadamard type , 2017, Advances in Difference Equations.

[21]  Martin Bohner,et al.  Multivariable Dynamic Calculus on Time Scales , 2017 .

[22]  Svetlin G Georgiev,et al.  Integral Equations on Time Scales , 2016 .

[23]  Xiao-Bao Shu,et al.  A study on the mild solution of impulsive fractional evolution equations , 2016, Appl. Math. Comput..

[24]  Delfim F. M. Torres,et al.  A Conformable Fractional Calculus on Arbitrary Time Scales , 2015, 1505.03134.

[25]  Alaa E. Hamza,et al.  Semigroups of operators and abstract dynamic equations on time scales , 2015, Appl. Math. Comput..

[26]  Delfim F. M. Torres,et al.  A fractional calculus on arbitrary time scales: Fractional differentiation and fractional integration , 2014, Signal Process..

[27]  Ravi P. Agarwal,et al.  Dynamic Inequalities On Time Scales , 2014 .

[28]  Yong Zhou Basic Theory of Fractional Differential Equations , 2014 .

[29]  L. Barbanti,et al.  Ordinary fractional differential equations are in fact usual entire ordinary differential equations on time scales , 2014 .

[30]  A. Peterson,et al.  Advances in Dynamic Equations on Time Scales , 2012 .

[31]  A. Domoshnitsky,et al.  Maximum Principles and Boundary Value Problems for First-Order Neutral Functional Differential Equations , 2009 .