In situ investigation of the discharge of alkaline Zn–MnO2 batteries with synchrotron x-ray and neutron tomographies

Zn–MnO2 alkaline batteries were investigated in situ at different stages of electric discharge by synchrotron tomography with monochromatic x rays and by neutron tomography. The spatial distribution and the changes in the morphology of different components of a battery caused by the reduction of MnO2, the dissolution of Zn, and the nucleation and growth of ZnO are investigated with high spatial resolution around several micrometers with x rays. Neutron tomography is used to monitor the changes in the spatial distribution of hydrogen in the MnO2 matrix and provides complementary information about the process.

[1]  I. Bae,et al.  In Situ X‐Ray Absorption Fine Structure Studies of a Manganese Dioxide Electrode in a Rechargeable MnO2 / Zn Alkaline Battery Environment , 1996 .

[2]  D. Linden Handbook Of Batteries , 2001 .

[3]  P. Novák,et al.  In situ neutron radiography of lithium-ion batteries during charge/discharge cycling , 2001 .

[4]  M. Breiter,et al.  The Anodic Dissolution and Passivation of Zinc in Concentrated Potassium Hydroxide Solutions , 1969 .

[5]  M. Mansuetto,et al.  In Situ Raman Spectroscopy on an Operating AA Zn ‐ MnO2 Battery under High Discharge Currents , 1999 .

[6]  Jun Chen,et al.  High‐Power Alkaline Zn–MnO2 Batteries Using γ‐MnO2 Nanowires/Nanotubes and Electrolytic Zinc Powder , 2005 .

[7]  Y. Shao-horn,et al.  Morphology and Spatial Distribution of ZnO Formed in Discharged Alkaline Zn / MnO2 AA Cells , 2003 .

[8]  A. Bard,et al.  Standard Potentials in Aqueous Solution , 1985 .

[9]  P. Buseck,et al.  Defects in nsutite (γ-MnO2) and dry-cell battery efficiency , 1983, Nature.

[10]  Elizabeth J. Podlaha,et al.  Modeling of Cylindrical Alkaline Cells V . High Discharge Rates , 1994 .

[11]  C. J. Gabriel,et al.  The Zn ‐ KOH System: The Solution‐Precipitation Path for Anodic ZnO Formation , 1979 .

[12]  Ingolf Lindau,et al.  Handbook on Synchrotron Radiation, Volume 2 , 1989 .

[13]  A. Manthiram,et al.  Role of bismuth and factors influencing the formation of Mn3O4 in rechargeable alkaline batteries based on bismuth-containing manganese oxides , 2003 .

[14]  Christopher S. Johnson,et al.  Structural and electrochemical studies of α-manganese dioxide (α-MnO2) , 1997 .

[15]  Heinrich Riesemeier,et al.  BAMline: the first hard X-ray beamline at BESSY II , 2001 .

[16]  C. Grey,et al.  2 H MAS NMR and SPECS Studies of γ ­ MnO2 Reduction in Zinc Alkaline Primary Batteries , 2004 .

[17]  P. Novák,et al.  In situ neutron radiography of lithium-ion batteries: the gas evolution on graphite electrodes during the charging , 2004 .

[18]  K. Kordesch,et al.  Improvements of the Rechargeable Alkaline MnO2 ‐ Zn Cell , 1996 .

[19]  E. Podlaha,et al.  Modeling of Cylindrical Alkaline Cells VI . Variable Discharge Conditions , 1994 .

[20]  Xiaofang Yang,et al.  Synchrotron x‐ray diffraction studies of the structural properties of electrode materials in operating battery cells , 1996 .

[22]  K. Kordesch,et al.  Development of flat plate rechargeable alkaline manganese dioxide-zinc cells , 2006 .

[23]  Chao-Yang Wang,et al.  Quantification of Liquid Water Saturation in a PEM Fuel Cell Diffusion Medium Using X-ray Microtomography , 2006 .

[24]  D. Scherson,et al.  In Situ Raman Spectroscopy of Zinc Electrodes in Alkaline Solutions , 2003 .