Responses to salinity stress in bivalves: Evidence of ontogenetic changes in energetic physiology on Cerastoderma edule

[1]  Zoë Rawles Physiological measurements , 2019, Essential Knowledge and Skills for Healthcare Assistants and Assistant Practitioners.

[2]  anonymous In Review , 2018 .

[3]  D. Levitis,et al.  Beyond being eaten or swept away: ontogenetic transitions drive developmental mortality in marine barnacle larvae , 2016 .

[4]  L. Walters,et al.  Synergistic Effects of Salinity and Temperature on the Survival of Two Nonnative Bivalve Molluscs, Perna viridis (Linnaeus 1758) and Mytella charruana (d’Orbigny 1846) , 2016 .

[5]  C. Hauton Effects of salinity as a stressor to aquatic invertebrates , 2016 .

[6]  X. Montaudouin,et al.  Cockle population dynamics: recruitment predicts adult biomass, not the inverse , 2016 .

[7]  S. Jenkins,et al.  Changes in small scale spatial structure of cockle Cerastoderma edule (L.) post-larvae , 2015 .

[8]  E. Gosling Circulation, respiration, excretion and osmoregulation , 2015 .

[9]  J. Marques,et al.  The impact of estuarine salinity changes on the bivalves Scrobicularia plana and Cerastoderma edule, illustrated by behavioral and mortality responses on a laboratory assay , 2015 .

[10]  E. Gosling Marine Bivalve Molluscs: Gosling/Marine Bivalve Molluscs , 2015 .

[11]  M. Elliott,et al.  Mass mortalities in bivalve populations: A review of the edible cockle Cerastoderma edule (L.) , 2014 .

[12]  A. Villalba,et al.  Cockle Cerastoderma edule fishery collapse in the Ría de Arousa (Galicia, NW Spain) associated with the protistan parasite Marteilia cochillia. , 2014, Diseases of aquatic organisms.

[13]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[14]  Benjamin S. Eberline,et al.  Differences in extreme low salinity timing and duration differentially affect eastern oyster (Crassostrea virginica) size class growth and mortality in Breton Sound, LA , 2013 .

[15]  M. Elliott,et al.  The riddle of the sands: how population dynamics explains causes of high bivalve mortality , 2013 .

[16]  S. Culloty,et al.  Climate change impacts on potential recruitment in an ecosystem engineer , 2013, Ecology and evolution.

[17]  P. Beninger,et al.  Fine-scale spatial structure of the exploited infaunal bivalve Cerastoderma edule on the French Atlantic coast , 2013 .

[18]  S. Jenkins,et al.  Aggregated prey and predation rates: Juvenile shore crabs (Carcinus maenas) foraging on post-larval cockles (Cerastoderma edule) , 2012 .

[19]  T. Harder,et al.  Tough Adults, Frail Babies: An Analysis of Stress Sensitivity across Early Life-History Stages of Widely Introduced Marine Invertebrates , 2012, PloS one.

[20]  S. Malham,et al.  A review of the biology of European cockles (Cerastoderma spp.) , 2012, Journal of the Marine Biological Association of the United Kingdom.

[21]  P. C. Reid,et al.  Impacts of climate change on European marine ecosystems: Observations, expectations and indicators , 2011 .

[22]  J. Levinton,et al.  Climate Change, Precipitation and Impacts on an Estuarine Refuge from Disease , 2011, PloS one.

[23]  M. Pardal,et al.  Effects of extreme climate events on the macrobenthic communities' structure and functioning of a temperate estuary. , 2011, Marine pollution bulletin.

[24]  J. Molares,et al.  Multispecies Mortality Patterns of Commercial Bivalves in Relation to Estuarine Salinity Fluctuation , 2011, Estuaries and Coasts.

[25]  S. Cheung,et al.  The combined effects of oxygen availability and salinity on physiological responses and scope for growth in the green-lipped mussel Perna viridis. , 2011, Marine pollution bulletin.

[26]  J. J. Beukema,et al.  Long-term variability in bivalve recruitment, mortality, and growth and their contribution to fluctuations in food stocks of shellfish-eating birds , 2010 .

[27]  L. Walters,et al.  Exploring the Survival Threshold: A Study of Salinity Tolerance of the Nonnative Mussel Mytella charruana , 2010 .

[28]  Christopher P. Cesar,et al.  Effects of experimental small‐scale cockle (Cerastoderma edule L.) fishing on ecosystem function , 2009 .

[29]  L. Dabouineau,et al.  Modelling of common European cockle Cerastoderma edule fishing grounds aimed at sustainable management of traditional harvesting , 2009, Fisheries Science.

[30]  J. Ruesink,et al.  The ecological role of bivalve shellfish aquaculture in the estuarine environment: A review with application to oyster and clam culture in West Coast (USA) estuaries , 2009 .

[31]  Mytilidae , 2008, Seashells of Southern Florida.

[32]  J. Molares,et al.  Natural mortality of the cockle Cerastoderma edule (L.) from the Ria of Arousa (NW Spain) intertidal zone , 2008 .

[33]  J. Widdows,et al.  Effect of salinity and temperature on feeding physiology and scope for growth of an invasive species (Brachidontes pharaonis - MOLLUSCA: BIVALVIA) within the Mediterranean sea , 2008 .

[34]  D. Raffaelli,et al.  The impact of extreme flooding events and anthropogenic stressors on the macrobenthic communities’ dynamics , 2008 .

[35]  Michael J. Crawley,et al.  The R book , 2022 .

[36]  Bin Zhou,et al.  Filtration and oxygen consumption rates on various growth stages of Scapharca broughtonii spat , 2007 .

[37]  T. Fujii Spatial patterns of benthic macrofauna in relation to environmental variables in an intertidal habitat in the Humber estuary, UK: Developing a tool for estuarine shoreline management , 2007 .

[38]  G. Soria,et al.  Effect of increasing salinity on physiological response in juvenile scallops Argopecten purpuratus at two rearing temperatures , 2007 .

[39]  M. Vincx,et al.  The effect of temperature and salinity on the survival of Mytilopsis leucophaeata larvae (Mollusca, Bivalvia): The search for environmental limits , 2007 .

[40]  A. Zuur,et al.  Analysing Ecological Data , 2007 .

[41]  C. Resgalla,et al.  The effect of temperature and salinity on the physiological rates of the mussel Perna perna (Linnaeus 1758) , 2007 .

[42]  W. Armonies,et al.  Drifting meio- and macrobenthic invertebrates on tidal flats in Königshafen: A review , 1994, Helgoländer Meeresuntersuchungen.

[43]  Cerastoderma edule Adult-larval interactions in the suspension-feeding bivalves , 2006 .

[44]  A. Davis,et al.  Synergistic effects associated with climate change and the development of rocky shore molluscs , 2005 .

[45]  J. Beukema,et al.  Decline of recruitment success in cockles and other bivalves in the Wadden Sea: possible role of climate change, predation on postlarvae and fisheries , 2005 .

[46]  A. Zotin,et al.  Age-Related Changes in Oxygen Consumption in the Edible Mussel Mytilus edulis from the White Sea , 2004, Biology Bulletin of the Russian Academy of Sciences.

[47]  A. Kharazova,et al.  Mechanisms of salinity adaptations in marine molluscs , 1997, Hydrobiologia.

[48]  M. Ramón Population dynamics and secondary production of the cockle Cerastoderma edule (L.) in a backbarrier tidal flat in the Wadden Sea , 2003 .

[49]  C. Philippart,et al.  � 2003, by the American Society of Limnology and Oceanography, Inc. Climate-related changes in recruitment of the bivalve Macoma balthica , 2022 .

[50]  L. A. Velasco,et al.  Feeding physiology of infaunal (Mulinia edulis) and epifaunal (Mytilus chilensis) bivalves under a wide range of concentrations and qualities of seston , 2002 .

[51]  P. Herman,et al.  Macrobenthic species response surfaces along estuarine gradients: prediction by logistic regression , 2002 .

[52]  K. Reise,et al.  Differential effects of the severe winter of 1995/96 on the intertidal bivalves Mytilus edulis, Cerastoderma edule and Mya arenaria in the Northern Wadden Sea , 2001, Helgoland Marine Research.

[53]  P. Meire,et al.  The subtidal macrobenthos in the mesohaline part of the Schelde Estuary (Belgium): influenced by man? , 2000, Journal of the Marine Biological Association of the United Kingdom.

[54]  J. Navarro,et al.  Physiological responses of the Chilean scallop Argopecten purpuratus to decreasing salinities , 1998 .

[55]  A. Smaal,et al.  Seasonal Variation in Physiological Energetics of Mytilus Edulis and Cerastoderma Edule of Different Size Classes , 1997, Journal of the Marine Biological Association of the United Kingdom.

[56]  J. Widdows,et al.  Effects of elevated temperatures on the scope for growth and resistance to air exposure of the clam Ruditapes decussatus (L.), from southern Portugal* , 1997 .

[57]  W. Armonies Changes in distribution patterns of 0-group bivalves in the Wadden Sea: Byssus-drifting releases juveniles from the constraints of hydrography , 1996 .

[58]  Courtney E. Richmond,et al.  Short-term fluctuations in salinity: effects on planktonic invertebrate larvae , 1996 .

[59]  G. Bachelet,et al.  Experimental evidence of complex interactions between biotic and abiotic factors in the dynamics of an intertidal population of the bivalve Cerastoderma edule , 1996 .

[60]  B. Bayne,et al.  Feeding Physiology of Bivalves: Time-Dependence and Compensation for Changes in Food Availability , 1993 .

[61]  S. Hutchinson,et al.  QUANTIFICATION OF THE PHYSIOLOGICAL RESPONSES OF THE EUROPEAN FLAT OYSTER OSTREA EDULIS L. TO TEMPERATURE AND SALINITY , 1992 .

[62]  K. Jensen Dynamics and growth of the cockle, Cerastoderma edule, on an intertidal mud-flat in the Danish Wadden sea: Effects of submersion time and density , 1992 .

[63]  W. Armonies Migratory rhythms of drifting juvenile molluscs in tidal waters of the Wadden Sea , 1992 .

[64]  Carl André,et al.  Adult-larval interactions in the suspension-feeding bivalves Cerastoderma edule and Mya arenaria , 1991 .

[65]  J. Navarro The effects of salinity on the physiological ecology of Choromytilus chorus (Molina, 1782) (Bivalvia : Mytilidae) , 1988 .

[66]  P. Mayzaud,et al.  0 : N atomic ratio as a tool to describe zooplankton metabolism , 2022 .

[67]  R. Seed,et al.  The interactive roles of predation and tidal elevation in structuring populations of the edible cockle , 1987 .

[68]  M. Nossier ECOPHYSIOLOGICAL RESPONSES OF CERASTODERMA EDULE (L.) AND C. GLAUCUM(BRUGUIÈRE) TO DIFFERENT SALINITY REGIMES AND EXPOSURE TO AIR , 1986 .

[69]  K. Yankson Observations on byssus systems in the spat of Cerastoderma glaucum and C. edule , 1986, Journal of the Marine Biological Association of the United Kingdom.

[70]  E. R. Trueman,et al.  Effects of Environmental Stress on Marine Bivalve Molluscs , 1985 .

[71]  B. Bayne The Effects of Stress and Pollution on Marine Animals , 1984 .

[72]  R. Rosenberg,et al.  Food selection and consumption of the shrimp Crangon crangon in some shallow marine areas in western Sweden , 1984 .

[73]  H. U. Riisgård,et al.  Size, oxygen consumption and growth in the mussel Mytilus edulis , 1983 .

[74]  J. Widdows,et al.  Aspects of nitrogen metabolism of the common mussel Mytilus edulis: Adaptation to abrupt and fluctuating changes in salinity , 1979 .

[75]  S. Shumway Effect of salinity fluctuation on the osmotic pressure and Na+, Ca2+ and Mg2+ ion concentrations in the hemolymph of bivalve molluscs , 1977 .

[76]  S. Pierce,et al.  Relationship between ammonia excretion rates and hemolymph nitrogenous compounds of a euryhaline bivalve during low salinity acclimation. , 1976, The Biological bulletin.

[77]  Paul Kingston,et al.  Some Observations on the Effects of Temperature and Salinity Upon the Growth of Cardium Edule and Cardium Glaucum Larvae in the Laboratory , 1974, Journal of the Marine Biological Association of the United Kingdom.

[78]  B. Bayne,et al.  Biochemical Effects of Temperature and Nutritive Stress on Mytilus Edulis L. , 1973, Journal of the Marine Biological Association of the United Kingdom.

[79]  L. Solórzano DETERMINATION OF AMMONIA IN NATURAL WATERS BY THE PHENOLHYPOCHLORITE METHOD 1 1 This research was fully supported by U.S. Atomic Energy Commission Contract No. ATS (11‐1) GEN 10, P.A. 20. , 1969 .

[80]  J. Coughlan The estimation of filtering rate from the clearance of suspensions , 1969 .

[81]  L. Solórzano Determination of ammonia in natural waters by the phenol hypochlorite method , 1969 .