Mid-infrared silicon photonic waveguides and devices [Invited]

Silicon has been the material of choice of the photonics industry over the last decade due to its easy integration with silicon electronics, high index contrast, small footprint, and low cost, as well as its optical transparency in the near-infrared and parts of mid-infrared (MIR) wavelengths (from 1.1 to 8 μm). While considerations of micro- and nano-fabrication-induced device parameter deviations and a higher-than-desirable propagation loss still serve as a bottleneck in many on-chip data communication applications, applications as sensors do not require similar stringent controls. Photonic devices on chips are increasingly being demonstrated for chemical and biological sensing with performance metrics rivaling benchtop instruments and thus promising the potential of portable, handheld, and wearable monitoring of various chemical and biological analytes. In this paper, we review recent advances in MIR silicon photonics research. We discuss the pros and cons of various platforms, the fabrication procedures for building such platforms, and the benchmarks demonstrated so far, together with their applications. Novel device architectures and improved fabrication techniques have paved a viable way for realizing low-cost, high-density, multi-function integrated devices in the MIR. These advances are expected to benefit several application domains in the years to come, including communication networks, sensing, and nonlinear systems.

[1]  T. Hall,et al.  Refractive Index Engineering With Subwavelength Gratings in Silicon Microphotonic Waveguides , 2011, IEEE Photonics Journal.

[2]  James S. Wilkinson,et al.  Germanium Mid-Infrared Photonic Devices , 2017, Journal of Lightwave Technology.

[3]  Boris Mizaikoff,et al.  On-chip integrated mid-infrared GaAs/AlGaAs Mach-Zehnder interferometer. , 2013, Analytical chemistry.

[4]  Ke Xu,et al.  Mid-Infrared Grating Couplers for Silicon-on-Sapphire Waveguides , 2012, IEEE Photonics Journal.

[5]  Gunther Roelkens,et al.  2 μm wavelength range InP-based type-II quantum well photodiodes heterogeneously integrated on silicon photonic integrated circuits. , 2015, Optics express.

[6]  Influence of three-photon absorption on mid-infrared cross-phase modulation in silicon-on-sapphire waveguides. , 2013, Optics express.

[7]  T. Baehr‐Jones,et al.  Silicon-on-sapphire integrated waveguides for the mid-infrared. , 2009, Optics express.

[8]  W. Marsden I and J , 2012 .

[9]  Gunther Roelkens,et al.  Silicon-Based Photonic Integration Beyond the Telecommunication Wavelength Range , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[10]  Federico Capasso,et al.  Widely tunable high-power external cavity quantum cascade laser operating in continuous-wave at room temperature , 2009 .

[11]  M. Nedeljkovic,et al.  Waveguides for mid-infrared group IV photonics , 2010, 7th IEEE International Conference on Group IV Photonics.

[12]  Pao Tai Lin,et al.  Air-clad silicon pedestal structures for broadband mid-infrared microphotonics. , 2013, Optics letters.

[13]  D. Thomson,et al.  Mid-infrared wavelength division (de)multiplexer using an interleaved angled multimode interferometer on the silicon-on-insulator platform. , 2014, Optics letters.

[14]  Pao Tai Lin,et al.  Planar silicon nitride mid-infrared devices , 2013 .

[15]  H. Hamann,et al.  Active control of slow light on a chip with photonic crystal waveguides , 2005, Nature.

[16]  T. L. Myers,et al.  Single-mode low-loss chalcogenide glass waveguides for the mid-infrared. , 2006, Optics letters.

[17]  M. Lipson,et al.  Octave-spanning mid-infrared supercontinuum generation in silicon nanowaveguides. , 2014, Optics letters.

[18]  John Bowers,et al.  Heterogeneously integrated 2.0 μm CW hybrid silicon lasers at room temperature. , 2015, Optics letters.

[19]  Swapnajit Chakravarty,et al.  Multiplexed detection of xylene and trichloroethylene in water by photonic crystal absorption spectroscopy. , 2013, Optics letters.

[20]  O. Boyraz,et al.  Electrical signal-to-noise ratio improvement in indirect detection of mid-IR signals by wavelength conversion in silicon-on-sapphire waveguides , 2011 .

[21]  S. Fathpour,et al.  High-contrast, all-silicon waveguiding platform for ultra-broadband mid-infrared photonics , 2013 .

[22]  David J. Thomson,et al.  Mid-Infrared Thermo-Optic Modulators in SoI , 2014, IEEE Photonics Technology Letters.

[23]  D. Moss,et al.  Low propagation loss silicon-on-sapphire waveguides for the mid-infrared. , 2011, Optics express.

[24]  Ray T. Chen,et al.  Cavity-Waveguide Coupling Engineered High Sensitivity Silicon Photonic Crystal Microcavity Biosensors With High Yield , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[25]  A Katzir,et al.  Single-mode mid-infrared silver halide planar waveguides. , 1996, Optics letters.

[26]  Kent Alan Wilkinson Carey Silicon on sapphire , 1981 .

[27]  Joris Van Campenhout,et al.  Silicon-based heterogeneous photonic integrated circuits for the mid-infrared , 2013 .

[28]  Ke Xu,et al.  Wideband subwavelength gratings for coupling between silicon-on-insulator waveguides and optical fibers. , 2012, Optics letters.

[29]  Siegfried Janz,et al.  Recent Advances in Silicon Waveguide Devices Using Sub-Wavelength Gratings , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[30]  Abraham Katzir,et al.  Silver halide single-mode strip waveguides for the mid-infrared. , 2012, Optics letters.

[31]  Ke Xu,et al.  Mid-infrared Suspended Membrane Waveguide and Ring Resonator on Silicon-on-Insulator , 2012, IEEE Photonics Journal.

[32]  Mathieu Carras,et al.  Low loss SiGe graded index waveguides for mid-IR applications. , 2014, Optics express.

[33]  John,et al.  Strong localization of photons in certain disordered dielectric superlattices. , 1987, Physical review letters.

[34]  Milan M. Milosevic,et al.  Silicon waveguides and devices for the mid-infrared , 2012 .

[35]  Yu-Chi Chang,et al.  Low-loss germanium strip waveguides on silicon for the mid-infrared. , 2012, Optics letters.

[36]  Benjamin J Eggleton,et al.  Silicon-on-sapphire pillar waveguides for Mid-IR supercontinuum generation. , 2015, Optics express.

[37]  Michal Lipson,et al.  Low-loss air-clad suspended silicon platform for mid-infrared photonics , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[38]  Ray T. Chen,et al.  Complementary metal–oxide–semiconductor compatible high efficiency subwavelength grating couplers for silicon integrated photonics , 2012 .

[39]  Pavel Cheben,et al.  Evanescent field waveguide sensing with subwavelength grating structures in silicon-on-insulator. , 2014, Optics letters.

[40]  David J. Thomson,et al.  High-speed detection at two micrometres with monolithic silicon photodiodes , 2015, Nature Photonics.

[41]  Marko Loncar,et al.  Sensing nitrous oxide with QCL-coupled silicon-on-sapphire ring resonators. , 2015, Optics express.

[42]  Irfan Bulu,et al.  Mid-infrared photonic crystal cavities in silicon. , 2011, Optics express.

[43]  Marko Loncar,et al.  Integrated high-quality factor silicon-on-sapphire ring resonators for the mid-infrared , 2013, 10th International Conference on Group IV Photonics.

[44]  Yi Yu,et al.  Low-loss chalcogenide waveguides for chemical sensing in the mid-infrared. , 2013, Optics express.

[45]  Sanja Zlatanovic,et al.  Mid-infrared wavelength conversion in silicon waveguides using ultracompact telecom-band-derived pump source , 2010 .

[46]  Michael Jetter,et al.  Ultra-sensitive mid-infrared evanescent field sensors combining thin-film strip waveguides with quantum cascade lasers. , 2012, The Analyst.

[47]  Olav Solgaard,et al.  Fano resonances in integrated silicon Bragg reflectors for sensing applications. , 2013, Optics express.

[48]  Ray T. Chen,et al.  Grating-coupled silicon-on-sapphire integrated slot waveguides operating at mid-infrared wavelengths. , 2014, Optics letters.

[49]  Richard A. Soref,et al.  Silicon waveguided components for the long-wave infrared regionThis article was submitted to the spe , 2006 .

[50]  G. Lo,et al.  Silicon-on-Insulator Waveguide Devices for Broadband Mid-Infrared Photonics , 2017, IEEE Photonics Journal.

[51]  R. Soref Mid-infrared photonics in silicon and germanium , 2010 .

[52]  Siegfried Janz,et al.  Multiaperture planar waveguide spectrometer formed by arrayed Mach-Zehnder interferometers. , 2007, Optics express.

[53]  T. Asano,et al.  High-Q photonic nanocavity in a two-dimensional photonic crystal , 2003, Nature.

[54]  Ray T. Chen,et al.  Silicon nano-membrane based photonic crystal microcavities for high sensitivity bio-sensing. , 2012, Optics letters.

[55]  Guo-Qiang Lo,et al.  1.9 μm hybrid silicon/iii-v semiconductor laser , 2013 .

[56]  Gunther Roelkens,et al.  On-Chip Mid-Infrared Photothermal Spectroscopy Using Suspended Silicon-on-Insulator Microring Resonators , 2016 .

[57]  Ray T. Chen,et al.  The role of group index engineering in series-connected photonic crystal microcavities for high density sensor microarrays. , 2014, Applied physics letters.

[58]  O. Solgaard,et al.  Monolithic Silicon Waveguides in Standard Silicon , 2013, IEEE Micro.

[59]  D. Thomson,et al.  Silicon Photonic Waveguides and Devices for Near- and Mid-IR Applications , 2015, IEEE Journal of Selected Topics in Quantum Electronics.

[60]  Michal Lipson,et al.  Silicon-chip mid-infrared frequency comb generation , 2014, Nature Communications.

[61]  Mitsuru Takenaka,et al.  Novel Ge waveguide platform on Ge-on-insulator wafer for mid-infrared photonic integrated circuits. , 2016, Optics express.

[62]  Tymon Barwicz,et al.  Demonstration of electrooptic modulation at 2165nm using a silicon Mach-Zehnder interferometer. , 2012, Optics express.

[63]  D. Moss,et al.  Mid-infrared nonlinear optics in SiGe waveguides , 2015, 2015 IEEE Summer Topicals Meeting Series (SUM).

[64]  Ray T. Chen,et al.  Mid-infrared holey and slotted photonic crystal waveguides in silicon-on-sapphire for chemical warfare simulant detection , 2015 .

[65]  Michal Lipson,et al.  Modelocked mid-infrared frequency combs in a silicon microresonator , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[66]  R. Baets,et al.  Passive SOI devices for the short-wave-infrared , 2012 .

[67]  M. Lipson,et al.  Broadband mid-infrared frequency comb generation in a Si3N4 microresonator , 2015, 2015 Conference on Lasers and Electro-Optics (CLEO).

[68]  A. E. Willner,et al.  Silicon-on-Nitride Waveguide With Ultralow Dispersion Over an Octave-Spanning Mid-Infrared Wavelength Range , 2012, IEEE Photonics Journal.

[69]  Gunther Roelkens,et al.  Bridging the mid-infrared-to-telecom gap with silicon nanophotonic spectral translation , 2012, Nature Photonics.

[70]  Ke Xu,et al.  High-responsivity graphene/silicon-heterostructure waveguide photodetectors , 2013, Nature Photonics.

[71]  R. Loo,et al.  Germanium-on-silicon planar concave grating wavelength (de)multiplexers in the mid-infrared , 2013 .

[72]  Yinlei Hao,et al.  Long-wave infrared 1 × 2 MMI based on air-gap beneath silicon rib waveguides. , 2011, Optics express.

[73]  Andre Delage,et al.  Mid-Infrared Silicon-on-Insulator Fourier-Transform Spectrometer Chip , 2016, IEEE Photonics Technology Letters.

[74]  I. Bulu,et al.  Study of thermally-induced optical bistability and the role of surface treatments in Si-based mid-infrared photonic crystal cavities. , 2011, Optics express.

[75]  Ray T. Chen,et al.  Mid-infrared silicon-on-sapphire waveguide coupled photonic crystal microcavities , 2015 .

[76]  G. Mashanovich,et al.  Demonstration of Silicon-on-insulator mid-infrared spectrometers operating at 3.8 μm. , 2013, Optics express.

[77]  Yang Liu,et al.  Silicon waveguides and ring resonators at 5.5 µm , 2010 .

[78]  Albert Schliesser,et al.  Mid-infrared frequency combs , 2012, Nature Photonics.

[79]  I Molina-Fernández,et al.  Suspended SOI waveguide with sub-wavelength grating cladding for mid-infrared. , 2014, Optics letters.

[80]  Mid-infrared Raman amplification and wavelength conversion in dispersion engineered silicon-on-sapphire waveguides , 2014 .

[81]  Ke Xu,et al.  Focusing subwavelength grating coupler for mid-infrared suspended membrane waveguide. , 2012, Optics letters.

[82]  Sasan Fathpour,et al.  Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics , 2013 .

[83]  Christopher V. Poulton,et al.  Electric field-induced second-order nonlinear optical effects in silicon waveguides , 2017 .

[84]  Ray T. Chen,et al.  Methods to array photonic crystal microcavities for high throughput high sensitivity biosensing on a silicon-chip based platform. , 2012, Lab on a chip.

[85]  William W. Bewley,et al.  Quantum cascade laser on silicon , 2016 .

[86]  Ke Xu,et al.  Characterization of Mid-Infrared Silicon-on-Sapphire Microring Resonators With Thermal Tuning , 2012, IEEE Photonics Journal.

[87]  E. Yablonovitch,et al.  Inhibited spontaneous emission in solid-state physics and electronics. , 1987, Physical review letters.

[88]  Ray T. Chen,et al.  Slow light engineering for high Q high sensitivity photonic crystal microcavity biosensors in silicon. , 2012, Biosensors & bioelectronics.

[89]  Xiao-ping Liu,et al.  Efficient Second Harmonic Generation by Mode Phase Matching in a Silicon Waveguide , 2017, IEEE Photonics Journal.

[90]  Ciyuan Qiu,et al.  Suspended Si ring resonator for mid-IR application. , 2013, Optics letters.

[91]  Yurii A. Vlasov,et al.  Mid-infrared optical parametric amplifier using silicon nanophotonic waveguides , 2010, 1001.1533.

[92]  Malcolm Dunn,et al.  Mid-infrared photonic crystal waveguides in silicon. , 2012, Optics express.

[93]  M. Lipson,et al.  Optical nonlinearities in high-confinement silicon carbide waveguides. , 2015, Optics letters.

[94]  B. Mizaikoff,et al.  Mercury-cadmium-telluride waveguides--a novel strategy for on-chip mid-infrared sensors. , 2013, Analytical chemistry.

[95]  G. M. Hale,et al.  Optical Constants of Water in the 200-nm to 200-microm Wavelength Region. , 1973, Applied optics.

[96]  Ivan Glesk,et al.  Subwavelength grating filtering devices. , 2014, Optics express.

[97]  Hongtao Lin,et al.  Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing. , 2014, ACS nano.

[98]  B. Eggleton,et al.  Mid-IR absorption sensing of heavy water using a silicon-on-sapphire waveguide. , 2016, Optics letters.

[99]  Milos Nedeljkovic,et al.  Low-Loss Mid-Infrared SOI Slot Waveguides , 2015, IEEE Photonics Technology Letters.

[100]  Milos Nedeljkovic,et al.  Ultra-compact MMI-based beam splitter demultiplexer for the NIR/MIR wavelengths of 1.55 μm and 2 μm. , 2017, Optics express.

[101]  R. Varshney,et al.  Silicon-on-nitride slot waveguide: A promising platform as mid-IR trace gas sensor , 2016 .

[102]  P. M. Asbeck,et al.  Advanced thin-film silicon-on-sapphire technology: microwave circuit applications , 1998 .

[103]  R. Loo,et al.  Germanium-on-Silicon Mid-Infrared Arrayed Waveguide Grating Multiplexers , 2013, IEEE Photonics Technology Letters.

[104]  J. B. Rodriguez,et al.  Silicon-on-insulator shortwave infrared wavelength meter with integrated photodiodes for on-chip laser monitoring. , 2014, Optics express.

[105]  M. Lipson,et al.  Coherent mid-infrared frequency combs in silicon-microresonators in the presence of Raman effects. , 2016, Optics express.

[106]  I Molina-Fernández,et al.  Suspended silicon mid-infrared waveguide devices with subwavelength grating metamaterial cladding. , 2016, Optics express.

[107]  Pao Tai Lin,et al.  Chip-scale Mid-Infrared chemical sensors using air-clad pedestal silicon waveguides. , 2013, Lab on a chip.

[108]  B. Richter,et al.  Comparison of three transmission methods for integrated optical waveguide propagation loss measurement , 1993 .

[109]  Gunther Roelkens,et al.  Broad wavelength coverage 2.3 µm III-V-on-silicon DFB laser array , 2017 .

[110]  Gunther Roelkens,et al.  Heterogeneously integrated III–V-on-silicon 2.3x μm distributed feedback lasers based on a type-II active region , 2016 .

[111]  William W. Bewley,et al.  Heterogeneously Integrated Distributed Feedback Quantum Cascade Lasers on Silicon , 2016 .

[112]  M. Nedeljkovic,et al.  Free-Carrier Electrorefraction and Electroabsorption Modulation Predictions for Silicon Over the 1–14- $\mu\hbox{m}$ Infrared Wavelength Range , 2011, IEEE Photonics Journal.

[113]  Pao Tai Lin,et al.  Mid-infrared spectrometer using opto-nanofluidic slot-waveguide for label-free on-chip chemical sensing. , 2014, Nano letters.

[114]  Milos Nedeljkovic,et al.  Low loss silicon waveguides for the mid-infrared. , 2011, Optics express.

[115]  Ray T. Chen,et al.  Experimental Demonstration of Propagation Characteristics of Mid-infrared Photonic Crystal Waveguides in Silicon-on-sapphire References and Links , 2022 .

[116]  Candice Tsay,et al.  Mid-infrared characterization of solution-processed As2S3 chalcogenide glass waveguides. , 2010, Optics express.

[117]  David J. Moss,et al.  Midinfrared supercontinuum generation from 2 to 6 μm in a silicon nanowire , 2015 .

[118]  Silver halide planar waveguides and grating couplers for middle infrared integrated optics , 2010 .

[119]  R. Baets,et al.  Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides. , 2011, Optics express.

[120]  J. D. Joannopoulos,et al.  Enhancement of nonlinear effects using photonic crystals , 2004, Nature materials.

[121]  J. B. Rodriguez,et al.  Silicon-on-insulator spectrometers with integrated GaInAsSb photodiodes for wide-band spectroscopy from 1510 to 2300 nm. , 2013, Optics express.

[122]  Guo-Qiang Lo,et al.  Silicon photonic platforms for mid-infrared applications [Invited] , 2017 .

[123]  Siegfried Janz,et al.  Refractive index engineering with subwavelength gratings for efficient microphotonic couplers and planar waveguide multiplexers. , 2010, Optics letters.

[124]  Usman Younis,et al.  Germanium-on-SOI waveguides for mid-infrared wavelengths. , 2016, Optics express.

[125]  Gunther Roelkens,et al.  2.3 µm range InP-based type-II quantum well Fabry-Perot lasers heterogeneously integrated on a silicon photonic integrated circuit. , 2016, Optics express.

[126]  David J. Thomson,et al.  Silicon photonic devices and platforms for the mid-infrared , 2013 .

[127]  H. Tang,et al.  Low‐loss aluminium nitride thin film for mid‐infrared microphotonics , 2014 .

[128]  Milos Nedeljkovic,et al.  Cascade-coupled racetrack resonators based on the Vernier effect in the mid-infrared. , 2014, Optics express.

[129]  G. Roelkens,et al.  High-Efficiency SOI Fiber-to-Chip Grating Couplers and Low-Loss Waveguides for the Short-Wave Infrared , 2012, IEEE Photonics Technology Letters.