Coherence estimation in synthetic aperture radar data based on speckle noise modeling.

In the past we proposed a multidimensional speckle noise model to which we now include systematic phase variation effects. This extension makes it possible to define what is believed to be a novel coherence model able to identify the different sources of bias when coherence is estimated on multidimensional synthetic radar aperture (SAR) data. On the one hand, low coherence biases are basically due to the complex additive speckle noise component of the Hermitian product of two SAR images. On the other hand, the availability of the coherence model permits us to quantify the bias due to topography when multilook filtering is considered, permitting us to establish the conditions upon which information may be estimated independently of topography. Based on the coherence model, two coherence estimation approaches, aiming to reduce the different biases, are proposed. Results with simulated and experimental polarimetric and interferometric SAR data illustrate and validate both, the coherence model and the coherence estimation algorithms.

[1]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[2]  L Shusun Aufeis in the Ivishak River, Alaska, mapped from satellite radar interferometry , 1997 .

[3]  Lars M. H. Ulander,et al.  Repeat-pass SAR interferometry over forested terrain , 1995 .

[4]  Martti Hallikainen,et al.  Boreal forest coherence-based measures of interferometric pair suitability for operational stem volume retrieval , 2004, IEEE Geoscience and Remote Sensing Letters.

[5]  J. Hyyppä,et al.  Accuracy comparison of various remote sensing data sources in the retrieval of forest stand attributes , 2000 .

[6]  Carlos López-Martínez,et al.  Extended Multidimensional Speckle Noise Model and its Implications on the Estimation of Physical Information , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[7]  Richard M. Goldstein,et al.  Studies of multibaseline spaceborne interferometric synthetic aperture radars , 1990 .

[8]  Carlos López-Martínez,et al.  Wavelet transform-based interferometric SAR coherence estimator , 2005, IEEE Signal Processing Letters.

[9]  Claudio Prati,et al.  SAR interferometry: a "Quick and dirty" coherence estimator for data browsing , 1997, IEEE Trans. Geosci. Remote. Sens..

[10]  Carlos López-Martínez,et al.  Polarimetric SAR speckle noise model , 2003, IEEE Trans. Geosci. Remote. Sens..

[11]  Fuk K. Li,et al.  Synthetic aperture radar interferometry , 2000, Proceedings of the IEEE.

[12]  Takeshi Matsuoka,et al.  Polarimetric Characteristics of sea ice in the sea of Okhotsk observed by airborne L-band SAR , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[13]  Lars M. H. Ulander,et al.  Repeat-pass SAR interferometry over forested terrain , 1995, IEEE Transactions on Geoscience and Remote Sensing.

[14]  M. Foster,et al.  THE COEFFICIENT OF COHERENCE: ITS ESTIMATION AND USE IN GEOPHYSICAL DATA PROCESSING , 1967 .

[15]  S. Hensley,et al.  Radar interferometry , 2008, 2008 IEEE Radar Conference.

[16]  A. Reigber,et al.  Phase unwrapping by fusion of local and global methods , 1997, IGARSS'97. 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing - A Scientific Vision for Sustainable Development.

[17]  E. Weber Hoen,et al.  Topography-driven variations in backscatter strength and depth observed over the Greenland Ice Sheet with InSAR , 2000, IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120).

[18]  T. Strozzi,et al.  Using repeat-pass SAR interferometry for mapping wet snowcovers , 1998, IGARSS '98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat. No.98CH36174).

[19]  Paris W. Vachon,et al.  Coherence estimation for SAR imagery , 1999, IEEE Trans. Geosci. Remote. Sens..

[20]  Hiroshi Shimizu,et al.  Surface height adjustments in pyroclastic-flow deposits observed at Unzen volcano by JERS-1 SAR interferometry , 2003 .

[21]  Leslie M. Novak,et al.  Optimal speckle reduction in polarimetric SAR imagery , 1990 .

[22]  P. Dammert,et al.  Accuracy of INSAR measurements in forested areas , 1997 .

[23]  Dan Johan Weydahl,et al.  Analysis of ERS Tandem SAR coherence from glaciers, valleys, and fjord ice on Svalbard , 2001, IEEE Trans. Geosci. Remote. Sens..

[24]  Dirk H. Hoekman,et al.  Biophysical forest type characterization in the Colombian Amazon by airborne polarimetric SAR , 2002, IEEE Trans. Geosci. Remote. Sens..

[25]  Gabriel Vasile,et al.  General adaptive-neighborhood technique for improving synthetic aperture radar interferometric coherence estimation. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[26]  M. Seymour,et al.  Maximum likelihood estimation for SAR interferometry , 1994, Proceedings of IGARSS '94 - 1994 IEEE International Geoscience and Remote Sensing Symposium.

[27]  Jong-Sen Lee,et al.  On the sensitivity of polarimetric coherence to small and large scale surface roughness , 2003, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No.03CH37477).

[28]  Juan M. Lopez-Sanchez,et al.  Retrieval of biophysical parameters of agricultural crops using polarimetric SAR interferometry , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[29]  E Trouvé,et al.  Fringe detection in noisy complex interferograms. , 1996, Applied optics.

[30]  Jong-Sen Lee,et al.  Modulation of polarimetric coherence by ocean features , 2002, IEEE International Geoscience and Remote Sensing Symposium.

[31]  Fabio Rocca,et al.  The wavenumber shift in SAR interferometry , 1994, IEEE Trans. Geosci. Remote. Sens..

[32]  Konstantinos P. Papathanassiou,et al.  Polarimetric SAR interferometry , 1998, IEEE Trans. Geosci. Remote. Sens..