Genetic mapping of quantitative trait loci conditioning salt tolerance in wild soybean (Glycine soja) PI 483463

[1]  H. Nguyen,et al.  Differences in Ion Accumulation and Salt Tolerance among Glycine Accessions , 2011 .

[2]  T. Vuong,et al.  Confirmation of quantitative trait loci for resistance to multiple-HG types of soybean cyst nematode (Heterodera glycines Ichinohe) , 2011, Euphytica.

[3]  A. Hamwieh,et al.  Identification and validation of a major QTL for salt tolerance in soybean , 2011, Euphytica.

[4]  J. Schmutz,et al.  Whole-genome sequencing and intensive analysis of the undomesticated soybean (Glycine soja Sieb. and Zucc.) genome , 2010, Proceedings of the National Academy of Sciences.

[5]  Rex T. Nelson,et al.  Abundance of SSR Motifs and Development of Candidate Polymorphic SSR Markers (BARCSOYSSR_1.0) in Soybean , 2010 .

[6]  Henry T. Nguyen,et al.  Novel quantitative trait loci for broad-based resistance to soybean cyst nematode (Heterodera glycines Ichinohe) in soybean PI 567516C , 2010, Theoretical and Applied Genetics.

[7]  Thomas E. Carter,et al.  A high density integrated genetic linkage map of soybean and the development of a 1536 universal soy linkage panel for quantitative trait locus mapping. , 2010 .

[8]  T. Sakurai,et al.  Genome sequence of the palaeopolyploid soybean , 2010, Nature.

[9]  H. Nguyen,et al.  Inheritance of salt tolerance in wild soybean (Glycine soja Sieb. and Zucc.) accession PI483463. , 2009, The Journal of heredity.

[10]  N. Leonhardt,et al.  Altered expression of cytosolic/nuclear HSC70-1 molecular chaperone affects development and abiotic stress tolerance in Arabidopsis thaliana. , 2009, Journal of experimental botany.

[11]  J. Gai,et al.  Identification of quantitative trait loci associated with salt tolerance during seedling growth in soybean (Glycine max L.) , 2008 .

[12]  A. Hamwieh,et al.  Conserved salt tolerance quantitative trait locus (QTL) in wild and cultivated soybeans , 2008 .

[13]  C. Shumway,et al.  Evaluation of a Simple Method to Screen Soybean Genotypes for Salt Tolerance , 2008 .

[14]  H. Lam,et al.  Salt tolerance in soybean. , 2008, Journal of integrative plant biology.

[15]  R. Shoemaker,et al.  High-throughput genotyping with the GoldenGate assay in the complex genome of soybean , 2008, Theoretical and Applied Genetics.

[16]  Safiullah M. Pathan,et al.  Recent Advances in Breeding For Drought and Salt Stress Tolerance in Soybean , 2007 .

[17]  Yanling Bai,et al.  Studies on the overexpression of the soybean GmNHX1 in Lotus corniculatus: The reduced Na+ level is the basis of the increased salt tolerance , 2006 .

[18]  H. Lam,et al.  Tonoplast-located GmCLC1 and GmNHX1 from soybean enhance NaCl tolerance in transgenic bright yellow (BY)-2 cells. , 2006, Plant, cell & environment.

[19]  W. Kao,et al.  Response of three Glycine species to salt stress , 2006 .

[20]  P. Rengasamy World salinization with emphasis on Australia. , 2006, Journal of experimental botany.

[21]  K. Gunderson,et al.  Illumina universal bead arrays. , 2006, Methods in enzymology.

[22]  Q. Luo,et al.  Differential sensitivity to chloride and sodium ions in seedlings of Glycine max and G. soja under NaCl stress. , 2005, Journal of plant physiology.

[23]  Viswanathan Chinnusamy,et al.  Understanding and Improving Salt Tolerance in Plants , 2005 .

[24]  G. Xue,et al.  Enhanced salt tolerance of transgenic wheat (Tritivum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+ , 2004 .

[25]  C. Zheng,et al.  The cotton GhNHX1 gene encoding a novel putative tonoplast Na(+)/H(+) antiporter plays an important role in salt stress. , 2004, Plant & cell physiology.

[26]  Yoshiyuki Tanaka,et al.  Function, intracellular localization and the importance in salt tolerance of a vacuolar Na(+)/H(+) antiporter from rice. , 2004, Plant & cell physiology.

[27]  W. Kenworthy,et al.  Chloride tolerance in soybean and perennial Glycine accessions , 2004, Euphytica.

[28]  T. Carter,et al.  A major QTL conditioning salt tolerance in S-100 soybean and descendent cultivars , 2004, Theoretical and Applied Genetics.

[29]  Marcello Mastrorilli,et al.  Salinity effect on crop development and yield, analysis of salt tolerance according to several classification methods , 2003 .

[30]  R. Voorrips MapChart: software for the graphical presentation of linkage maps and QTLs. , 2002, The Journal of heredity.

[31]  J. Na,et al.  Mutation in PMR1, a Ca2+-ATPase in Golgi, Confers Salt Tolerance in Saccharomyces cerevisiae by Inducing Expression of PMR2, an Na+-ATPase in Plasma Membrane* , 2001, The Journal of Biological Chemistry.

[32]  E. Blumwald,et al.  Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit , 2001, Nature Biotechnology.

[33]  Roeland E. Voorrips,et al.  Software for the calculation of genetic linkage maps , 2001 .

[34]  M. Cho,et al.  Identification of a Calmodulin-Regulated Soybean Ca2+-ATPase (SCA1) That Is Located in the Plasma Membrane , 2000, Plant Cell.

[35]  W. Snedden,et al.  Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. , 1999, Science.

[36]  R. Doerge,et al.  Empirical threshold values for quantitative trait mapping. , 1994, Genetics.

[37]  R. Staples,et al.  Salinity Tolerance in Plants: Strategies for Crop Improvement , 1984 .

[38]  W. Fehr,et al.  Stage of Development Descriptions for Soybeans, Glycine Max (L.) Merrill , 1971 .

[39]  G. Abel Inheritance of the Capacity for Chloride Inclusion and Chloride Exclusion by Soybeans 1 , 1969 .

[40]  D. D. Kosambi The estimation of map distances from recombination values. , 1943 .