Research on Fuzzy PID Pitch-Controlled System Based on SVM

[1]  Sergios Theodoridis,et al.  A geometric approach to Support Vector Machine (SVM) classification , 2006, IEEE Transactions on Neural Networks.

[2]  Ahmet Serdar Yilmaz,et al.  Pitch angle control in wind turbines above the rated wind speed by multi-layer perceptron and radial basis function neural networks , 2009, Expert Syst. Appl..

[3]  Devendra P. Garg,et al.  A numerical optimization approach for tuning fuzzy logic controllers , 1999, IEEE Trans. Syst. Man Cybern. Part B.

[4]  Liang Bo,et al.  Wind power system pitch control based on fuzzy self-learning emendation control theory , 2009 .

[5]  H. Camblong Digital robust control of a variable speed pitch regulated wind turbine for above rated wind speeds , 2008 .

[6]  Guanrong Chen,et al.  Fuzzy PID controller: Design, performance evaluation, and stability analysis , 2000, Inf. Sci..

[7]  Vladimir Katic,et al.  Maximum Power Search in Wind Turbine Based on Fuzzy Logic Control , 2009 .

[8]  Yang Hui-qian Support Vector Machines Based Nonlinear Inverse Control and Simulation , 2006 .

[9]  S. Sathiya Keerthi,et al.  Improvements to the SMO algorithm for SVM regression , 2000, IEEE Trans. Neural Networks Learn. Syst..

[10]  T. Ekelund,et al.  Modeling and control of variable-speed wind-turbine drive-system dynamics , 1995 .

[11]  Peter J. Gawthrop,et al.  Optimal control of nonlinear systems: a predictive control approach , 2003, Autom..

[12]  Yunqian Ma,et al.  Practical selection of SVM parameters and noise estimation for SVM regression , 2004, Neural Networks.

[13]  Dug Hun Hong,et al.  Support vector fuzzy regression machines , 2003, Fuzzy Sets Syst..