High index-contrast all-solid photonic crystal fibers by pressure-assisted melt infiltration of silica matrices

All-solid photonic crystal fibers (PCFs) are created by pressure-assisted filling of low-melting-point chalcogenide and tellurite glasses into silica matrix fibers with channel diameters as small as 200 nm. Overcoming to a large extent the problem of viscosity and, thus, process incompatibility of silica and non-silicate optical glasses, the technique provides a unique way of producing waveguiding devices with high core-cladding index-contrast, high optical non-linearity and a transmission range that extends into the mid infrared. In this paper, as a prerequisite for waveguide production, the rheologic properties and controlled flow of highly-viscous liquids under geometrically confined conditions are considered, and deviations from Newtonian behavior are discussed. Because the filling process requires only very small quantities of filling material that do not come into contact with the environment, and because ultra-high cooling rates can be achieved, the technique enables the use of difficult-to-handle or reactive optical glasses.

[1]  Yi Qin,et al.  Micro-forming and miniature manufacturing systems: development needs and perspectives , 2006 .

[2]  P. Russell,et al.  Photonic Crystal Fibers , 2003, Science.

[3]  Y. Yue,et al.  Relaxation and Glass Transition in an Isostatically Compressed Diopside Glass , 2007 .

[4]  Jasbinder S. Sanghera,et al.  Highly nonlinear chalcogenide glasses for all-optical switching , 2003, Other Conferences.

[5]  E. M. Vogel,et al.  Tellurite glass: a new candidate for fiber devices , 1994 .

[6]  Periklis Petropoulos,et al.  Extruded singlemode, high-nonlinearity, tellurite glass holey fibre , 2005 .

[7]  John C. Mauro,et al.  Advancing glasses through fundamental research , 2009 .

[8]  Animesh Jha,et al.  Efficient ~2 μm Tm 3+ -doped tellurite fiber laser , 2008 .

[9]  O. Reynolds III. An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels , 1883, Proceedings of the Royal Society of London.

[10]  I. Avramov Viscosity in disordered media , 2005 .

[11]  M. Peng,et al.  Intense red photoluminescence from Mn2+-doped (Na+; Zn2+) sulfophosphate glasses and glass ceramics as LED converters. , 2010, Optics express.

[12]  I. P. Kotsalas,et al.  High-temperature structural phase transitions of Ge x S 1 − x alloys studied by Raman spectroscopy , 2001 .

[13]  Lothar Wondraczek,et al.  All-solid bandgap guiding in tellurite-filled silica photonic crystal fibers. , 2009, Optics letters.

[14]  Evidence for nanoscale phase separation of stressed–rigid glasses , 2003 .

[15]  P. Petropoulos,et al.  Mid-IR Supercontinuum Generation From Nonsilica Microstructured Optical Fibers , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[16]  M. Schmidt,et al.  Optical properties of photonic crystal fiber with integral micron-sized Ge wire. , 2008, Optics express.

[17]  Y. Yue,et al.  Mechanically induced excess enthalpy in inorganic glasses , 2005 .

[18]  R. Morena Phosphate glasses as alternatives to Pb-based sealing frits , 2000 .

[19]  T. Shibata,et al.  Solubility of Neon, Argon, Krypton, and Xenon in Binary and Ternary Silicate Systems: A New View on Noble Gas Solubility , 1998 .

[20]  H. Vogel,et al.  Das Temperaturabhangigkeitsgesetz der Viskositat von Flussigkeiten , 1921 .

[21]  T. Sekiya,et al.  Raman spectra of MO1/2TeO2 (M = Li, Na, K, Rb, Cs and Tl) glasses , 1992 .

[22]  K. Kneipp,et al.  Glass formation, properties and structure of glasses in the TeO2ZnO system , 1992 .

[23]  Lothar Wondraczek,et al.  Structure-energy map of alkali borosilicate glasses: Effects of pressure and temperature , 2007 .

[24]  Edgar Dutra Zanotto,et al.  Pressure dependence of viscosity. , 2005, The Journal of chemical physics.

[25]  L. Wondraczek,et al.  Relaxation of Libyan desert glass: Evidence for negative viscosity–pressure dependence in silica? , 2009 .

[26]  E. W. Washburn The Dynamics of Capillary Flow , 1921 .

[27]  A. Jha,et al.  Raman Spectroscopic and DTA Studies of TeO2-ZnO-Na2O Tellurite Glasses , 2008 .

[28]  B. Guillot,et al.  Breaking of Henry's law for noble gas and CO2 solubility in silicate melt under pressure , 2005, Nature.

[29]  I. Gutzow,et al.  Crystallization of glass forming melts under hydrostatic pressure and shear stress: Part II Flow induced melt crystallization: a new method of nucleation catalysis , 1997 .

[30]  N. Wagner,et al.  Shear thickening in colloidal dispersions , 2009 .

[31]  Richard Lucas,et al.  Ueber das Zeitgesetz des kapillaren Aufstiegs von Flüssigkeiten , 1918 .

[32]  Yasutake Ohishi,et al.  Erbium-doped tellurite glass fibre laser and amplifier , 1997 .

[33]  G. Fulcher,et al.  ANALYSIS OF RECENT MEASUREMENTS OF THE VISCOSITY OF GLASSES , 1925 .

[34]  P. Baer,et al.  Band Spectra in the Schumann Region of NO and N2+ with Enriched Nitrogen-15 , 1952, Nature.

[35]  L. B. Shaw,et al.  Supercontinuum generation in an As2Se3-based chalcogenide PCF using four-wave mixing and soliton self-frequency shift , 2009, 2009 Conference on Optical Fiber Communication - incudes post deadline papers.

[36]  V. O. Sokolov,et al.  Raman band intensities of tellurite glasses. , 2005, Optics letters.

[37]  Y. Yue,et al.  Structural response of a highly viscous aluminoborosilicate melt to isotropic and anisotropic compressions , 2009 .

[38]  B. Aitken GeAs sulfide glasses with unusually low network connectivity , 2004 .

[39]  John C. Mauro,et al.  Viscosity of glass-forming liquids , 2009, Proceedings of the National Academy of Sciences.

[40]  R. Brückner Anisotropic glasses and glass melts : a survey , 1996 .

[41]  I. Gutzow,et al.  Crystallization of glassforming melts under hydrostatic pressure and shear stress: Part I Crystallization catalysis under hydrostatic pressure: possibilities and limitations , 1997 .

[42]  P. Russell,et al.  Tellurite photonic crystal fiber. , 2003, Optics express.

[43]  L. Wondraczek,et al.  Relaxation and Prigogine-Defay ratio of compressed glasses with negative viscosity-pressure dependence. , 2009, The Journal of chemical physics.

[44]  T. D. Mel’nichenko,et al.  On the approximate estimation of the surface tension of chalcogenide glass melts , 2009 .