GaInN-Based Tunnel Junctions in n–p–n Light Emitting Diodes

We optimized p++-GaInN/n++-GaN tunnel junctions grown on conventional light-emitting diodes, corresponding to n–p–n structures. We investigated two dependences at the tunnel junctions, the InN mole fraction dependence and a doping dependence. The lowest voltage drop at the reverse-biased tunnel junction was 0.68 V at 20 mA with a 3 nm p++-Ga0.8In0.2N (Mg: 1×1020 cm-3)/30 nm n++-GaN (Si: 4×1020 cm-3) structure. We then found that the Mg memory effect was reasonably suppressed by using the p++-GaInN instead of a p++-GaN. At the same time, the amount of Si doping in the following n++-GaN should be substantially high to overcome the Mg memory effect.

[1]  I. Ozden,et al.  A dual-wavelength indium gallium nitride quantum well light emitting diode , 2001 .

[2]  Shigeru Nakagawa,et al.  Determination of piezoelectric fields in strained GaInN quantum wells using the quantum-confined Stark effect , 1998 .

[3]  Patrick Fay,et al.  Polarization-induced Zener tunnel junctions in wide-band-gap heterostructures. , 2009 .

[4]  S. Rajan,et al.  Polarization-engineered GaN/InGaN/GaN tunnel diodes , 2010, 1008.4124.

[5]  S. A. Stockman,et al.  GaN-Based Light Emitting Diodes with Tunnel Junctions , 2001 .

[6]  Isamu Akasaki,et al.  Quantum-Confined Stark Effect due to Piezoelectric Fields in GaInN Strained Quantum Wells , 1997 .

[7]  K. Kumakura,et al.  High hole concentrations in Mg-doped InGaN grown by MOVPE , 2000 .

[8]  Hiroshi Kurita,et al.  Over 30% efficient InGaP/GaAs tandem solar cells , 1997 .

[9]  L. Esaki New Phenomenon in Narrow Germanium p-n Junctions , 1958 .

[10]  Indium–Tin Oxide/Al Reflective Electrodes for Ultraviolet Light-Emitting Diodes , 2012 .

[11]  K. Kumakura,et al.  Activation Energy and Electrical Activity of Mg in Mg-Doped InxGa1-xN (x<0.2) , 2000 .

[12]  David Holec,et al.  Equilibrium critical thickness for misfit dislocations in III-nitrides , 2008 .

[13]  Hongxing Jiang,et al.  Electrical and optical properties of p-type InGaN , 2009 .

[14]  L. Coldren,et al.  Optical Design of InAlGaAs Low-Loss Tunnel-Junction Apertures for Long-Wavelength Vertical-Cavity Lasers , 2006, IEEE Journal of Quantum Electronics.

[15]  Isamu Akasaki,et al.  Piezoelectric Franz-Keldysh effect in strained GaInN/GaN heterostructures , 1999 .

[16]  H. Amano,et al.  Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer , 1986 .

[17]  S. Jeon,et al.  Lateral current spreading in GaN-based light-emitting diodes utilizing tunnel contact junctions , 2001 .

[18]  L. Coldren,et al.  Near-room-temperature continuous-wave operation of multiple-active-region 1.55 μm vertical-cavity lasers with high differential efficiency , 2000 .

[19]  Naoki Kobayashi,et al.  Mg-acceptor activation mechanism and transport characteristics in p-type InGaN grown by metalorganic vapor phase epitaxy , 2003 .

[20]  H. Amano,et al.  P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI) , 1989 .

[21]  S. Nakamura,et al.  Highly P-Typed Mg-Doped GaN Films Grown with GaN Buffer Layers , 1991 .

[22]  D.A. Buell,et al.  Electrical design optimization of single-mode tunnel-junction-based long-wavelength VCSELs , 2006, IEEE Journal of Quantum Electronics.

[23]  Zhibiao Hao,et al.  Theoretical study on critical thicknesses of InGaN grown on (0 0 0 1) GaN , 2011 .

[24]  S. Rajan,et al.  Demonstration of forward inter-band tunneling in GaN by polarization engineering , 2011, 1108.4075.

[25]  A. Nurmikko,et al.  Vertical cavity violet light emitting diode incorporating an aluminum gallium nitride distributed Bragg mirror and a tunnel junction , 2001 .

[26]  H. Amano,et al.  Compensation mechanism in MOCVD and MBE grown GaN : Mg , 2001 .

[27]  C. S. Oh,et al.  GaN tunnel junction as a current aperture in a blue surface-emitting light-emitting diode , 2002 .

[28]  M. Yamaguchi,et al.  Double Heterostructure GaAs Tunnel Junction for a AlGaAs/GaAs Tandem Solar Cell , 1988 .

[29]  Motoaki Iwaya,et al.  AlGaN-Based Deep Ultraviolet Light-Emitting Diodes Fabricated on Patterned Sapphire Substrates , 2011 .