Horizontal and vertical structures of Jovian infrared aurora: Observation using Subaru IRCS with adaptive optics

[1]  M. Fujimoto,et al.  Transient brightening of Jupiter's aurora observed by the Hisaki satellite and Hubble Space Telescope during approach phase of the Juno spacecraft , 2017 .

[2]  M. Fujimoto,et al.  Characteristics of solar wind control on Jovian UV auroral activity deciphered by long‐term Hisaki EXCEED observations: Evidence of preconditioning of the magnetosphere? , 2016 .

[3]  M. Fujimoto,et al.  Variation of Jupiter's aurora observed by Hisaki/EXCEED: 2. Estimations of auroral parameters and magnetospheric dynamics , 2016 .

[4]  M. Fujimoto,et al.  Variation of Jupiter's aurora observed by Hisaki/EXCEED: 1. Observed characteristics of the auroral electron energies compared with observations performed using HST/STIS , 2016 .

[5]  J. Connerney,et al.  Stability within Jupiter’s polar auroral ‘Swirl region’ over moderate timescales , 2016 .

[6]  J. Gérard,et al.  The far-ultraviolet main auroral emission at Jupiter – Part 2: Vertical emission profile , 2015 .

[7]  D. Grodent A Brief Review of Ultraviolet Auroral Emissions on Giant Planets , 2015 .

[8]  M. Fujimoto,et al.  Transient internally driven aurora at Jupiter discovered by Hisaki and the Hubble Space Telescope , 2015 .

[9]  Y. Kasaba,et al.  Vertical emissivity profiles of Jupiter's northern H3+ and H2 infrared auroras observed by Subaru/IRCS , 2014 .

[10]  K. Uemizu,et al.  Field-of-View Guiding Camera on the HISAKI (SPRINT-A) Satellite , 2014 .

[11]  Takeshi Sakanoi,et al.  Extreme Ultraviolet Radiation Measurement for Planetary Atmospheres/Magnetospheres from the Earth-Orbiting Spacecraft (Extreme Ultraviolet Spectroscope for Exospheric Dynamics: EXCEED) , 2014, Space Science Reviews.

[12]  R. West,et al.  Stratospheric aerosols on Jupiter from Cassini observations , 2013 .

[13]  Takeshi Sakanoi,et al.  The extreme ultraviolet spectroscope for planetary science, EXCEED , 2013 .

[14]  B. Bonfond,et al.  Jupiter's aurora in ultraviolet and infrared: Simultaneous observations with the Hubble Space Telescope and the NASA Infrared Telescope Facility , 2013 .

[15]  I. Cohen,et al.  Modeling of Jupiter's auroral curtain and upper atmospheric thermal structure , 2011 .

[16]  Chihiro Tao,et al.  UV and IR auroral emission model for the outer planets: Jupiter and Saturn comparison , 2011 .

[17]  P. Drossart,et al.  Spectro-imaging observations of Jupiter’s 2 μm auroral emission. II: Thermospheric winds , 2011 .

[18]  Denis Grodent,et al.  Variation of different components of Jupiter's auroral emission , 2008 .

[19]  J. Gérard,et al.  Auroral evidence of a localized magnetic anomaly in Jupiter's northern hemisphere , 2008 .

[20]  T. Stallard,et al.  First Vertical Ion Density Profile in Jupiter’s Auroral Atmosphere: Direct Observations Using the Keck II Telescope , 2008 .

[21]  C. Tao,et al.  Parameterization of ionization rate by auroral electron precipitation in Jupiter , 2008 .

[22]  S. Miller,et al.  Non-LTE effects on H-3(+) emission in the jovian upper atmosphere , 2005 .

[23]  Yukihiro Takahashi,et al.  Magnetic field variations in the Jovian magnetotail induced by solar wind dynamic pressure enhancements , 2005 .

[24]  Philippe Zarka,et al.  Jupiter's Aurora , 2007 .

[25]  P. Drossart,et al.  Spectro-imaging observations of Jupiter's 2-μm auroral emission. I. H3+ distribution and temperature , 2004 .

[26]  S. Miller,et al.  Jupiter's thermosphere and ionosphere , 2004 .

[27]  Denis Grodent,et al.  Jupiter's main auroral oval observed with HST-STIS , 2003 .

[28]  G. Millward,et al.  On the Dynamics of the Jovian Ionosphere and Thermosphere: II. The Measurement of H3+ Vibrational Temperature, Column Density, and Total Emission , 2002 .

[29]  C. M. Lindsay,et al.  Comprehensive Evaluation and Compilation of H3+ Spectroscopy , 2001 .

[30]  Denis Grodent,et al.  A self‐consistent model of the Jovian auroral thermal structure , 2001 .

[31]  K. Jockers,et al.  Fabry–Perot Imaging of Jupiter's Aurora at 2.1 μm☆ , 2000 .

[32]  A. Mallama,et al.  The Radius of Jupiter and Its Polar Haze , 2000 .

[33]  J. Connerney,et al.  New models of Jupiter's magnetic field constrained by the Io flux tube footprint , 1998 .

[34]  Krishan K. Khurana,et al.  Euler potential models of Jupiter's magnetospheric field , 1997 .

[35]  R. Baron,et al.  Emission Source Model of Jupiter's H+3Aurorae: A Generalized Inverse Analysis of Images , 1996 .

[36]  Jonathan Tennyson,et al.  Latitudinal Temperature Variations of Jovian H+3 , 1994 .

[37]  J. Tennyson,et al.  A TABLE OF ASTRONOMICALLY IMPORTANT RO-VIBRATIONAL TRANSITIONS FOR THE H-3(+) MOLECULAR ION , 1991 .

[38]  Y. H. Kim,et al.  Densities and vibrational distribution of H3 + in the Jovian auroral ionosphere , 1991 .

[39]  Jonathan Tennyson,et al.  Infrared emissions of H3(+) in the atmosphere of Jupiter in the 2. 1 and 4. 0 micron region , 1990 .

[40]  P. Drossart,et al.  Temperatures of the Jovian auroral zone inferred from 2-μm H2 quadropole line observations , 1990 .

[41]  S. Kim,et al.  Infrared processes in the Jovian auroral zone , 1988 .

[42]  T. Cravens Vibrationally excited molecular hydrogen in the upper atmosphere of Jupiter , 1987 .

[43]  I. Dabrowski The Lyman and Werner bands of H2 , 1984 .

[44]  A. Dalgarno,et al.  The Quadrupole Vibration-Rotation Transition Probabilities of Molecular Hydrogen , 1977 .