Magnitude and dispersion of Kleinman forbidden nonlinear optical coefficients

Starting with a perturbation expansion for the Kleinman forbidden nonlinear optical coefficient d_{ijk^{F}} and for Miller's \Delta_{ijk^{F}} , and making several approximations, we arrive at a simple result for the ratio of forbidden to allowed mixing nonlinearities ( \omega_{1} + \omega_{2} = \omega_{3} ), namely \Delta_{ijk^{F}}/\Delta_{ijk^{A}} \propto (\omega_{3}^{2} + 2\omega_{1}\omega_{2}) . For second-harmonic generation (SHG) this can be expressed as \Delta_{ijk^{F}}/\Delta_{ijk^{A}} \simeq (\omega/\chi)(\partial\chi/\partial\omega) , which clearly shows the close connection between \Delta_{ijk^{F}} and the linear dispersion. These expressions are shown to give good agreement with literature experimental values, as well as for our measurements on TeO 2 for various input frequencies ω 1 and ω 2 (i.e., \omega_{3} = 1.88, 2.33, 2.82, 3.50 , and 3.76 eV).

[1]  D. Chemla,et al.  Optical Second‐Harmonic Generation in Paratellurite and Kleinman's Symmetry Relations , 1972 .

[2]  Improved Geometry for Quantitative Measurements of Optical Frequency Doubling , 1965 .

[3]  F. Robinson Nonlinear optical coefficients , 1967 .

[4]  S. K. Kurtz,et al.  Maker Fringes: A Detailed Comparison of Theory and Experiment for Isotropic and Uniaxial Crystals , 1970 .

[5]  B. Levine A New Contribution to the Nonlinear Optical Susceptibilityi Arising from Unequal Atomic Radii , 1970 .

[6]  R. C. Miller,et al.  Quantitative Studies of Optical Harmonic Generation in CdS, BaTiO 3 , and KH 2 PO 4 Type Crystals , 1963 .

[7]  B. Levine Electrodynamical Bond-Charge Calculation of Nonlinear Optical Susceptibilities , 1969 .

[8]  N. Bloembergen,et al.  Interactions between light waves in a nonlinear dielectric , 1962 .

[9]  R. C. Miller Mechanism of Second Harmonic Generation of Optical Maser Beams in Quartz , 1963 .

[10]  G. Boyd,et al.  Linear and nonlinear optical properties of AgGaS 2 , CuGaS 2 , and CuInS 2 , and theory of the wedge technique for the measurement of nonlinear coefficients , 1971 .

[11]  R. C. Miller OPTICAL SECOND HARMONIC GENERATION IN PIEZOELECTRIC CRYSTALS , 1964 .

[12]  P. Franken,et al.  Structure of Nonlinear Optical Phenomena in Potassium Dihydrogen Phosphate , 1964 .

[13]  B. F. Levine,et al.  Bond-Charge Calculation of Nonlinear Optical Susceptibilities for Various Crystal Structures , 1973 .

[14]  P. Franken,et al.  Optical Harmonics and Nonlinear Phenomena , 1963 .

[15]  R. Chang,et al.  Measurement of the nonlinear susceptibility dispersion by dye lasers , 1971 .

[16]  D. A. Kleinman,et al.  Nonlinear Dielectric Polarization in Optical Media , 1962 .

[17]  Violation of Kleinman's symmetry condition in paratellurite , 1972 .

[18]  D. Haueisen,et al.  Nonlinear Electronic Dispersion in CuCl , 1971 .

[19]  G. Boyd,et al.  Parametric Interaction of Focused Gaussian Light Beams , 1968 .

[20]  S. Ieiri,et al.  Kleinman's symmetry relation in non-linear optical coefficient of LiIO3 , 1971 .

[21]  C. Bethea,et al.  Nonlinear Susceptibility of GaP; Relative Measurement and Use of Measured Values to Determine a Better Absolute Value , 1972 .

[22]  M. DiDomenico,et al.  Behavior of the Electronic Dielectric Constant in Covalent and Ionic Materials , 1971 .

[23]  Naoya Uchida,et al.  Optical Properties of Single-Crystal Paratellurite (TeO2) , 1971 .