Laser threshold magnetometry

We propose a new type of sensor, which uses diamond containing the optically active nitrogen-vacancy (NV$^-$) centres as a laser medium. The magnetometer can be operated at room-temperature and generates light that can be readily fibre coupled, thereby permitting use in industrial applications and remote sensing. By combining laser pumping with a radio-frequency Rabi-drive field, an external magnetic field changes the fluorescence of the NV$^-$ centres. We use this change in fluorescence level to push the laser above threshold, turning it on with an intensity controlled by the external magnetic field, which provides a coherent amplification of the readout signal with very high contrast. This mechanism is qualitatively different from conventional NV$^-$--based magnetometers which use fluorescence measurements, based on incoherent photon emission. We term our approach laser threshold magnetometry (LTM). We predict that an NV$^-$--based laser threshold magnetometer with a volume of 1mm$^3$ can achieve shot-noise limited d.c.~sensitivity of 1.86 fT$/\sqrt{\rm{Hz}}$ and a.c.~sensitivity of 3.97fT$/\sqrt{\rm{Hz}}$.

[1]  J H N Loubser,et al.  REVIEW: Electron spin resonance in the study of diamond , 1978 .

[2]  F. Jelezko,et al.  Photo-induced ionization dynamics of the nitrogen vacancy defect in diamond investigated by single-shot charge state detection , 2012, 1209.0268.

[3]  L. Hollenberg,et al.  Sensing of fluctuating nanoscale magnetic fields using nitrogen-vacancy centers in diamond. , 2009, Physical review letters.

[4]  T. Spiller,et al.  Single photon quantum non-demolition measurements in the presence of inhomogeneous broadening , 2009, 0902.2252.

[5]  Andrei Faraon,et al.  Resonant enhancement of the zero-phonon emission from a colour centre in a diamond cavity , 2010, 1012.3815.

[6]  C. Santori,et al.  Polarization-selective excitation of nitrogen vacancy centers in diamond , 2007, 0705.2006.

[7]  Neil B. Manson,et al.  The nitrogen-vacancy colour centre in diamond , 2013, 1302.3288.

[8]  F. Jelezko,et al.  Observation of coherent oscillations in a single electron spin. , 2004, Physical review letters.

[9]  C. Santori,et al.  Conversion of neutral nitrogen-vacancy centers to negatively charged nitrogen-vacancy centers through selective oxidation , 2010, 1001.5449.

[10]  Igor Aharonovich,et al.  Diamond-based single-photon emitters , 2011 .

[11]  G. Guo,et al.  Optical manipulation of the charge state of nitrogen-vacancy center in diamond , 2013 .

[12]  Alfred Leitenstorfer,et al.  Nanoscale imaging magnetometry with diamond spins under ambient conditions , 2008, Nature.

[13]  D. Suter,et al.  High-precision nanoscale temperature sensing using single defects in diamond. , 2013, Nano letters.

[14]  S. Prawer,et al.  Diamond chemical-vapor deposition on optical fibers for fluorescence waveguiding , 2005 .

[15]  G. Guo,et al.  Subdiffraction optical manipulation of the charge state of nitrogen vacancy center in diamond , 2015, Light: Science & Applications.

[16]  D. Maclaurin,et al.  Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. , 2011, Nature nanotechnology.

[17]  Seattle,et al.  Production of oriented nitrogen-vacancy color centers in synthetic diamond , 2011, 1112.5757.

[18]  F. Caruso,et al.  Detection of atomic spin labels in a lipid bilayer using a single-spin nanodiamond probe , 2013, Proceedings of the National Academy of Sciences.

[19]  M. Lukin,et al.  Efficient readout of a single spin state in diamond via spin-to-charge conversion. , 2014, Physical review letters.

[20]  L. Hollenberg,et al.  Scanning quantum decoherence microscopy , 2008, Nanotechnology.

[21]  Dirk Englund,et al.  Broadband magnetometry and temperature sensing with a light-trapping diamond waveguide , 2014, Nature Physics.

[22]  J. C. Macfarlane,et al.  Issues relating to airborne applications of HTS SQUIDs , 2002 .

[23]  S. Shikata,et al.  High-sensitivity magnetometry based on quantum beats in diamond nitrogen-vacancy centers. , 2012, Physical review letters.

[24]  Andrew D Greentree,et al.  Towards a picosecond transform-limited nitrogen-vacancy based single photon source. , 2007, Optics express.

[25]  S. Prawer,et al.  Diamond in Tellurite Glass: a New Medium for Quantum Information , 2011, Advanced materials.

[26]  M. Doherty,et al.  All-optical thermometry and thermal properties of the optically detected spin resonances of the NV(-) center in nanodiamond. , 2014, Nano letters.

[27]  R P Mildren,et al.  Highly efficient diamond Raman laser. , 2009, Optics letters.

[28]  J Wrachtrup,et al.  Optically controlled switching of the charge state of a single nitrogen-vacancy center in diamond at cryogenic temperatures. , 2013, Physical review letters.

[29]  D. Budker,et al.  Cavity-enhanced room-temperature magnetometry using absorption by nitrogen-vacancy centers in diamond. , 2014, Physical review letters.

[30]  F. Varela,et al.  Perception's shadow: long-distance synchronization of human brain activity , 1999, Nature.

[31]  F. Dolde,et al.  A Viewpoint on: Nanoscale Detection of a Single Fundamental Charge in Ambient Conditions Using the NV Center in Diamond , 2014 .

[32]  Charles Santori,et al.  Optical and spin coherence properties of nitrogen-vacancy centers placed in a 100 nm thick isotopically purified diamond layer. , 2012, Nano letters.

[33]  T. Kennedy,et al.  Combined optical and microwave approach for performing quantum spin operations on the nitrogen-vacancy center in diamond , 2001 .

[34]  M. Nabighian,et al.  The historical development of the magnetic method in exploration , 2005 .

[35]  R. Ilmoniemi,et al.  Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain , 1993 .

[36]  Junichi Isoya,et al.  Subpicotesla Diamond Magnetometry , 2014, 1411.6553.

[37]  Philip Hemmer,et al.  All-optical initialization, readout, and coherent preparation of single silicon-vacancy spins in diamond. , 2014, Physical review letters.

[38]  T. W. Kornack,et al.  A subfemtotesla multichannel atomic magnetometer , 2003, Nature.

[39]  D. Budker,et al.  High-sensitivity diamondmagnetometer with nanoscale resolution , 2016 .

[40]  C. Degen,et al.  Scanning magnetic field microscope with a diamond single-spin sensor , 2008, 0805.1215.

[41]  A. Greentree,et al.  Producing optimized ensembles of nitrogen-vacancy color centers for quantum information applications , 2009 .

[42]  N. Manson,et al.  Optimum photoluminescence excitation and recharging cycle of single nitrogen-vacancy centers in ultrapure diamond. , 2012, Physical review letters.

[43]  C. Aroca,et al.  Magnetometric sensor to control the ground traffic of aircraft , 1993 .

[44]  Jakob Reichel,et al.  Coupling of a single nitrogen-vacancy center in diamond to a fiber-based microcavity. , 2013, Physical review letters.

[45]  Nikolaos Grammalidis,et al.  ISMAEL - Reliable Eyes for Air Traffic Controllers at Airports , 2006, 2006 IEEE Intelligent Transportation Systems Conference.

[46]  Jacob M. Taylor,et al.  Nanoscale magnetic sensing with an individual electronic spin in diamond , 2008, Nature.

[47]  H. Weinstock A review of SQUID magnetometry applied to nondestructive evaluation , 1991 .

[48]  Christian Hepp,et al.  All-optical formation of coherent dark states of silicon-vacancy spins in diamond. , 2014, Physical review letters.

[49]  J. Wrachtrup,et al.  Coherence of single spins coupled to a nuclear spin bath of varying density , 2008, 0811.4731.

[50]  L. Hollenberg,et al.  Electric-field sensing using single diamond spins , 2011 .

[51]  Raymond G. Beausoleil,et al.  Diamonds with a high density of nitrogen-vacancy centers for magnetometry applications , 2009 .

[52]  F. Jelezko,et al.  Dark states of single nitrogen-vacancy centers in diamond unraveled by single shot NMR. , 2010, Physical review letters.

[53]  G. Romani,et al.  Magnetoencephalography - a noninvasive brain imaging method with 1 ms time resolution , 2001 .

[54]  Dietmar Drung,et al.  Improved direct-coupled dc SQUID read-out electronics with automatic bias voltage tuning , 2001 .

[55]  Lukin,et al.  Magnetic field imaging with nitrogen-vacancy ensembles , 2011, 1207.3339.

[56]  D. Budker,et al.  Infrared absorption band and vibronic structure of the nitrogen-vacancy center in diamond , 2013, 1301.6197.

[57]  P. Maurer,et al.  Nanometre-scale thermometry in a living cell , 2013, Nature.

[58]  Jacob M. Taylor,et al.  High-sensitivity diamond magnetometer with nanoscale resolution , 2008, 0805.1367.

[59]  C. Becher,et al.  Coupling of a single N-V center in diamond to a fiber-based microcavity , 2013, 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC.

[60]  J. Roch,et al.  Diamond based light-emitting diode for visible single-photon emission at room temperature , 2011 .