Post-Capture Detumble Trajectory Stabilization for Robotic Active Debris Removal

[1]  A. Müller Review of the exponential and Cayley map on SE(3) as relevant for Lie group integration of the generalized Poisson equation and flexible multibody systems , 2021, Proceedings of the Royal Society A.

[2]  Suril V. Shah,et al.  Impact modeling and reactionless control for post-capturing and maneuvering of orbiting objects using a multi-arm space robot , 2021 .

[3]  Farhad Aghili,et al.  Optimal Trajectories and Robot Control for Detumbling a Non-Cooperative Satellite , 2020 .

[4]  Marko Jankovic,et al.  Space Debris Ontology for ADR Capture Methods Selection , 2020, Acta Astronautica.

[5]  Surekha Kamath,et al.  Review of Active Space Debris Removal Methods , 2019, Space Policy.

[6]  Jianping Yuan,et al.  Detumbling strategy and coordination control of kinematically redundant space robot after capturing a tumbling target , 2018 .

[7]  A. Müller Screw and Lie group theory in multibody dynamics , 2017, Multibody System Dynamics.

[8]  Phillip Anz-Meador,et al.  Orbital Debris Quarterly News , 2018 .

[9]  Jianping Yuan,et al.  Detumbling control for kinematically redundant space manipulator post-grasping a rotational satellite , 2017 .

[10]  Matthew Kelly,et al.  An Introduction to Trajectory Optimization: How to Do Your Own Direct Collocation , 2017, SIAM Rev..

[11]  Bo Zhang,et al.  Coordinated stabilization for space robot after capturing a noncooperative target with large inertia , 2017 .

[12]  Angel Flores-Abad,et al.  Optimal Capture of a Tumbling Object in Orbit Using a Space Manipulator , 2017, J. Intell. Robotic Syst..

[13]  Tomasz Rybus,et al.  Trajectory Optimization of Space Manipulator with Non-zero Angular Momentum During Orbital Capture Maneuver , 2016 .

[14]  Scott J.I. Walker,et al.  Eddy currents applied to de-tumbling of space debris: Analysis and validation of approximate proposed methods , 2015 .

[15]  Massimiliano Vasile,et al.  Detumbling large space debris via laser ablation , 2015, 2015 IEEE Aerospace Conference.

[16]  Stefan Schaal,et al.  Full dynamics LQR control of a humanoid robot: An experimental study on balancing and squatting , 2014, 2014 IEEE-RAS International Conference on Humanoid Robots.

[17]  David E. Orin,et al.  Centroidal dynamics of a humanoid robot , 2013, Auton. Robots.

[18]  Farhad Aghili,et al.  Pre- and post-grasping robot motion planning to capture and stabilize a tumbling/drifting free-floater with uncertain dynamics , 2013, 2013 IEEE International Conference on Robotics and Automation.

[19]  John L. Crassidis,et al.  Geometric Integration of Quaternions , 2012 .

[20]  Yaguang Yang,et al.  Analytic LQR Design for Spacecraft Control System Based on Quaternion Model , 2012 .

[21]  Evangelos Papadopoulos,et al.  On cartesian motions with singularities avoidance for free-floating space robots , 2012, 2012 IEEE International Conference on Robotics and Automation.

[22]  J. Liou An active debris removal parametric study for LEO environment remediation , 2011 .

[23]  Farhad Aghili,et al.  Cartesian Control of Space Manipulators for On-Orbit Servicing , 2010 .

[24]  Ian R. Manchester,et al.  LQR-trees: Feedback Motion Planning via Sums-of-Squares Verification , 2010, Int. J. Robotics Res..

[25]  Russ Tedrake,et al.  Simulation-based LQR-trees with input and state constraints , 2010, 2010 IEEE International Conference on Robotics and Automation.

[26]  Yaguang Yang,et al.  Quaternion based model for momentum biased nadir pointing spacecraft , 2010 .

[27]  Farhad Aghili,et al.  Coordination control of a free-flying manipulator and its base attitude to capture and detumble a noncooperative satellite , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[28]  Farhad Aghili,et al.  Time-Optimal Detumbling Control of Spacecraft , 2009 .

[29]  Farhad Aghili,et al.  Optimal control of a space manipulator for detumbling of a target satellite , 2009, 2009 IEEE International Conference on Robotics and Automation.

[30]  David E. Orin,et al.  Centroidal Momentum Matrix of a humanoid robot: Structure and properties , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[31]  Farhad Aghili,et al.  Optimal Control for Robotic Capturing and Passivation of a Tumbling Satellite with Unknown Dynamics , 2008 .

[32]  C.-Y. Su,et al.  Hybrid inverse dynamics control of a free-flying space robot in contact with a target satellite , 2006, 2006 1st International Symposium on Systems and Control in Aerospace and Astronautics.

[33]  R. Colgren,et al.  A non-linear spacecraft attitude tracking controller for large non-constant rate commands , 2005 .

[34]  Kazuya Yoshida,et al.  Momentum distribution in a space manipulator for facilitating the post-impact control , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[35]  Kazuya Yoshida,et al.  Utilization of the bias momentum approach for capturing a tumbling satellite , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[36]  Michael A. Saunders,et al.  SNOPT: An SQP Algorithm for Large-Scale Constrained Optimization , 2002, SIAM J. Optim..

[37]  Kazuya Yoshida,et al.  Impact analysis and post-impact motion control issues of a free-floating Space robot subject to a force impulse , 1999, IEEE Trans. Robotics Autom..

[38]  Daniel E. Koditschek,et al.  Sequential Composition of Dynamically Dexterous Robot Behaviors , 1999, Int. J. Robotics Res..

[39]  Yoshiaki Ohkami,et al.  Rotational motion-damper for the capture of an uncontrolled floating satellite , 1998 .

[40]  Frank Chongwoo Park,et al.  A Lie Group Formulation of Robot Dynamics , 1995, Int. J. Robotics Res..

[41]  Steven Dubowsky,et al.  The kinematics, dynamics, and control of free-flying and free-floating space robotic systems , 1993, IEEE Trans. Robotics Autom..

[42]  Yangsheng Xu,et al.  The measure of dynamic coupling of Space robot systems , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[43]  S. Dubowsky,et al.  Dynamic Singularities in Free-floating Space Manipulators , 1993 .

[44]  Steven Dubowsky,et al.  On the nature of control algorithms for free-floating space manipulators , 1991, IEEE Trans. Robotics Autom..

[45]  Steven Dubowsky,et al.  The Kinematics and Dynamics of Space Manipulators: The Virtual Manipulator Approach , 1990, Int. J. Robotics Res..

[46]  Kazuya Yoshida,et al.  Resolved motion rate control of space manipulators with generalized Jacobian matrix , 1989, IEEE Trans. Robotics Autom..

[47]  Y. Umetani,et al.  Continuous Path Control of Space Manipulators Mounted on OMV , 1987 .

[48]  J. Graham,et al.  Space manipulators - Present capability and future potential space shuttle remote handling system , 1979 .

[49]  Andreas Müller,et al.  Screw and Lie group theory in multibody kinematics , 2017, Multibody System Dynamics.

[50]  Frank Kirchner,et al.  Trajectory Generation Method for Robotic Free-Floating Capture of a Non-cooperative, Tumbling Target , 2018 .

[51]  H. Cho,et al.  Partial Least Square-based Model Predictive Control for Large-scale Manufacturing Process with Disturbances , 1999 .

[52]  Kazuya Yoshida,et al.  A General Formulation of Under-Actuated Manipulator Systems , 1998 .

[53]  Roger W. Brockett,et al.  Robotic manipulators and the product of exponentials formula , 1984 .