Investigation of Mixed Element Hybrid Grid-Based CFD Methods for Rotorcraft Flow Analysis

Accurate first-principles flow prediction is essential to the design and development of rotorcraft, and while current numerical analysis tools can, in theory, model the complete flow field, in practice the accuracy of these tools is limited by various inherent numerical deficiencies. An approach that combines the first-principles physical modeling capability of CFD schemes with the vortex preservation capabilities of Lagrangian vortex methods has been developed recently that controls the numerical diffusion of the rotor wake in a grid-based solver by employing a vorticity-velocity, rather than primitive variable, formulation. Coupling strategies, including variable exchange protocols are evaluated using several unstructured, structured, and Cartesian-grid Reynolds Averaged Navier-Stokes (RANS)/Euler CFD solvers. Results obtained with the hybrid grid-based solvers illustrate the capability of this hybrid method to resolve vortex-dominated flow fields with lower cell counts than pure RANS/Euler methods.

[1]  Marvin A. Moulton,et al.  Free-Wake Hover Flow Prediction with a Hybrid Potential/Navier-Stokes Solver , 1999 .

[2]  Anastasios S. Lyrintzis,et al.  Improved Method for Rotor Wake Capturing , 2002 .

[3]  J. Gordon Leishman,et al.  Rotor Aerodynamics During Maneuvering Flight Using A Time-Accurate Free-Vortex Wake , 2003 .

[4]  E. M. Murman,et al.  Solution method for a hovering helicopter rotor using the Euler equations , 1985 .

[5]  Mahendra J. Bhagwat,et al.  Development of a CFD-Based Hover Performance Prediction Tool for Engineering Analysis , 2005 .

[6]  Chengjian He,et al.  Modeling Rotor Wake Dynamics with Viscous Vortex Particle Method , 2009 .

[7]  Daniel A. Wachspress,et al.  New free-wake analysis of rotorcraft hover performance using influence coefficients , 1989 .

[8]  Guillermo Rein,et al.  44th AIAA Aerospace Sciences Meeting and Exhibit , 2006 .

[9]  Yonghu Wenren,et al.  The Application of Computational Vorticity Confinement to Helicopter Rotor and Body Flows , 1993 .

[10]  Roger C. Strawn,et al.  30 Years of Rotorcraft Computational Fluid Dynamics Research and Development , 2006 .

[11]  W. K. Anderson,et al.  Recent improvements in aerodynamic design optimization on unstructured meshes , 2001 .

[12]  F. X. Caradonna,et al.  The Application of Vorticity Embedding to the Computation of Advancing Rotor Flows , 1993 .

[13]  Richard E. Brown,et al.  Rotor Wake Modeling for Flight Dynamic Simulation of Helicopters , 2000 .

[14]  P. Anusonti-Inthra Development of Rotorcraft Wake Capturing Methodology Using Fully Coupled CFD and Particle Vortex Transport Method , 2006 .

[15]  W. R. Johnson,et al.  The Prediction of Transonic Flows on an Advancing Rotor , 1986 .

[16]  Chengjian He,et al.  A Viscous Vortex Particle Model for Rotor Wake and Interference Analysis , 2008 .

[17]  Datta,et al.  Analysis Refinements for Prediction of Rotor Vibratory Loads in High-Speed Forward Flight , 2004 .

[18]  Eleuterio F. Toro,et al.  A weighted average flux method for hyperbolic conservation laws , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[19]  Roger C. Strawn,et al.  CFD Simulations of Tiltrotor Configurations in Hover , 2005 .

[20]  John Bridgeman,et al.  Development of an Overset/Hybrid CFD Method for the Prediction of Hovering Performance , 1997 .

[21]  Reynaldo J. Gomez Best Practices in Overset Grid Generation , 2002 .

[22]  Roger C. Strawn,et al.  Computational Modeling of Hovering Rotor and Wake Aerodynamics , 2001 .

[23]  J. Gordon Leishman,et al.  Rotor Free-Wake Modeling Using a Pseudo-Implicit Technique — Including Comparisons with Experimental Data , 1995 .

[24]  J. Steinhoff,et al.  Application of vorticity confinement to the prediction of flows over complex bodies - A survey of recent results , 2001 .

[25]  Richard E. Brown,et al.  Efficient High-Resolution Wake Modeling Using the Vorticity Transport Equation , 2004 .

[26]  Aeroflightdynamics Directorate,et al.  AEROMECHANICS OF THE ACTIVE ELEVON ROTOR , 2005 .

[27]  Marilyn J. Smith,et al.  Evaluation of CFD to Determine Two-Dimensional Airfoil Characteristics for Rotorcraft Applications , 2004 .

[28]  W. K. Anderson,et al.  An implicit upwind algorithm for computing turbulent flows on unstructured grids , 1994 .

[29]  David Michael O'Brien,et al.  Analysis Of Computational Modeling Techniques For Complete Rotorcraft Configurations , 2006 .

[30]  Lakshmi N. Sankar,et al.  A NAVIER-STOKES/FULL POTENTIAL/FREE WAKE METHOD FOR ADVANCING MULTI-BLADED ROTORS , 1997 .

[31]  Tetsuya Sato,et al.  26th AIAA Applied Aerodynamics Conference , 2008 .

[32]  Todd R. Quackenbush,et al.  Adaptive grid computation of transonic flows through cascades and investigation of chordwise bending upon aeroelastic response , 1994 .

[33]  Lakshmi N. Sankar,et al.  APPLICATION OF A SYMMETRIC TOTAL VARIATION DIMINISHING SCHEME TO AERODYNAMICS AND AEROACOUSTICS OF ROTORS , 2000 .

[34]  Boschitsch,et al.  Novel Eulerian Vorticity Transport Wake Module for Rotorcraft Flow Analysis , 2007 .

[35]  F. X. Caradonna,et al.  Experimental and Analytical Studies of a Model Helicopter Rotor in Hover , 1980 .

[36]  W. K. Anderson,et al.  Al A A-2001-0596 Recent Improvements in Aerodynamic Design Optimization On Unstructured Meshes , 2001 .

[37]  R. E. Brown,et al.  Modeling the Mutual Distortions of Interacting Helicopter and Aircraft Wakes , 2003 .

[38]  John Steinhoff,et al.  Application of vorticity confinement to prediction of the flow over complex bodies , 2003 .

[39]  M. Costes,et al.  Analysis of the VC2 Vorticity Confinement Scheme , 2006 .

[40]  Elizabeth M. Lee-Rausch,et al.  Rotor Airloads Prediction Using Unstructured Meshes and Loose CFD/CSD Coupling , 2008 .

[41]  H. Glauert The elements of aerofoil and airscrew theory , 1926 .

[42]  James D. Baeder,et al.  Field Velocity Approach and Geometric Conservation Law for Unsteady Flow Simulations , 2003 .

[43]  E. M. Murman,et al.  A computational method for helicopter vortex wakes , 1984 .

[44]  J. H. Strickland,et al.  Velocity boundary conditions for vorticity formulations of the incompressible Navier-Stokes equations , 1995 .

[45]  Robert Meakin,et al.  Consolidation of Time-Accurate, Moving Body Capabilities in OVERFLOW , 2002 .

[46]  O. J. Boelens,et al.  Towards affordable CFD simulations of rotors in forward flight , 2003 .

[47]  Marilyn J. Smith,et al.  Hybrid RANS-LES Turbulence Models on Unstructured Grids , 2008 .

[48]  Carlton Gamer Colorado Springs, Colorado , 1973 .

[49]  Marilyn J. Smith,et al.  Reverse- and cross-flow aerodynamics for high-advance-ratio flight , 2009 .

[50]  M. Drela XFOIL: An Analysis and Design System for Low Reynolds Number Airfoils , 1989 .

[51]  Lakshmi N. Sankar,et al.  A REVIEW OF COMPUTATIONAL TECHNIQUES FOR ROTOR WAKE MODELING , 2000 .

[52]  Wayne Johnson,et al.  Technology Drivers in the Development of CAMRAD II , 1999 .

[53]  Army,et al.  The Development of a CFD-Based Model of Dynamic Stall , 2004 .

[54]  Todd R. Quackenbush,et al.  Prediction of rotor aeroelastic response using a new coupling scheme , 1994 .

[55]  Robert E. Harris,et al.  An Efficient Adaptive Cartesian Vorticity Transport Solver for Rotorcraft Flowfield Analysis , 2010 .

[56]  Nischint Rajmohan,et al.  Application of hybrid methodology to rotors in steady and maneuvering flight , 2008 .

[57]  Glen R. Whitehouse,et al.  Modelling Rotor Wakes in Ground Effect , 2004 .

[58]  Phuriwat Anusonti-Inthra,et al.  Coupled CFD and Particle Vortex Transport Method: Wing Performance and Wake Validations , 2008 .

[59]  Roland A. Sweet,et al.  A direct method for the solution of poisson's equation with neumann boundary conditions on a staggered grid of arbitrary size , 1976 .

[60]  Todd R. Quackenbush,et al.  Rotorcraft Interactional Aerodynamics with Fast Vortex/Fast Panel Methods , 2003 .

[61]  J. Gordon Leishman,et al.  Rotor Free-Wake Modeling using a Relaxation Technique Including Comparisons with Experimental Data , 1994 .

[62]  E. Usta,et al.  Application of a symmetric total variation diminishing scheme to aerodynamics of rotors , 2002 .

[63]  Francis Caradonna Developments and challenges in rotorcraft aerodynamics , 2000 .

[64]  Petros Koumoutsakos,et al.  Vortex Methods: Theory and Practice , 2000 .

[65]  Lakshmi N. Sankar,et al.  Revolutionary Physics-Based Design Tools for Quiet Helicopters, Phase I-B Extension , 2006 .