Oscillation results for second-order nonlinear neutral delay dynamic equations on time scales

In this article, we consider the second-order nonlinear neutral delay dynamic equation on a time scale and establish some new oscillation and nonoscillation criteria. Also from these we deduce the Leighton–Wintner, Hille–Kneser, Kamenev, and Philos types oscillation criteria. Our results are different and complement the existence oscillation results for neutral delay dynamic equations on time scales in (Agarwal et al. 2004, Oscillation criteria for second-order nonlinear neutral dynamic equations. Journal of Mathematical Analysis and Applications, 300, 203–217) and (S.H. Saker, 2006, Oscillation of second-order nonlinear neutral delay dynamic equations on time scales. Journal of Computational and Applied Mathematics, 187, 123–141). Our results can be applied on the time scales , , , for h > 0, , , , and when where {t n } is the set of harmonic numbers, etc. Some examples are considered to illustrate the main results.

[1]  Qingkai Kong,et al.  Interval Criteria for Oscillation of Second-Order Linear Ordinary Differential Equations , 1999 .

[2]  Ravi P. Agarwal,et al.  Oscillation criteria for second-order nonlinear neutral delay dynamic equations , 2004 .

[3]  Samir H. Saker,et al.  Oscillation of nonlinear dynamic equations on time scales , 2004, Appl. Math. Comput..

[4]  E. Hille,et al.  Non-oscillation theorems , 1948 .

[5]  Samir H. Saker,et al.  Oscillation of second-order forced nonlinear dynamic equations on time scales , 2005 .

[6]  Elvan Akin-Bohner,et al.  Oscillation Properties of an Emden-Fowler Type Equation on Discrete Time Scales , 2003 .

[7]  S. H. Saker,et al.  Kamenev-type Oscillation Criteria for Second-Order Linear Delay Dynamic Equations , 2007 .

[8]  A. Peterson,et al.  Dynamic Equations on Time Scales , 2001 .

[9]  S. Hilger Analysis on Measure Chains — A Unified Approach to Continuous and Discrete Calculus , 1990 .

[10]  Ravi P. Agarwal,et al.  Oscillation of Second Order Delay Dynamic Equations , 2005 .

[11]  Samir H. Saker,et al.  Boundedness of Solutions of Second-Order Forced Nonlinear Dynamic Equations , 2006 .

[12]  Hong-Wu Wu,et al.  Oscillation criteria for second-order nonlinear neutral variable delay dynamic equations , 2006, Appl. Math. Comput..

[13]  L. Erbe,et al.  OSCILLATION CRITERIA FOR SECOND ORDER LINEAR EQUATIONS ON A TIME SCALE , 2003 .

[14]  Martin Bohner,et al.  Oscillation criteria for a certain class of second order Emden-Fowler dynamic equations. , 2007 .

[15]  Ravi P. Agarwal,et al.  Oscillation criteria for nonlinear perturbed dynamic equations of second-order on time scales , 2006 .

[16]  Samir H. Saker,et al.  Asymptotic behavior of solutions of a third-order nonlinear dynamic equation on time scales , 2005 .

[17]  Lynn Erbe,et al.  Oscillation Results for Second-order Linear Equations on a Time Scale , 2002 .

[18]  A. Peterson,et al.  Boundedness and oscillation for nonlinear dynamic equations on a time scale , 2003 .

[19]  Martin Bohner,et al.  Oscillation of Second Order Nonlinear Dynamic Equations on Time Scales , 2004 .

[20]  C. Philos,et al.  Oscillation theorems for linear differential equations of second order , 1989 .

[21]  Samir H. Saker,et al.  Oscillation Criteria for Second‐Order Nonlinear Dynamic Equations On Time Scales , 2003 .

[22]  W. Leighton The detection of the oscillation of solutions of a second order linear differential equation , 1950 .

[23]  A. Peterson,et al.  Dynamic Equations on Time Scales: An Introduction with Applications , 2001 .