p-adic adelic metrics and Quadratic Chabauty I

We give a new construction of p-adic heights on varieties over number fields using p-adic Arakelov theory. In analogy with Zhang’s construction of real-valued heights in terms of adelic metrics, these heights are given in terms of p-adic adelic metrics on line bundles. In particular, we describe a construction of canonical p-adic heights an abelian varieties and we show that, for Jacobians, this recovers the height constructed by Coleman and Gross. Our main application is a new and simplified approach to the Quadratic Chabauty method for the computation of rational points on certain curves over the rationals, by pulling back the canonical height on the Jacobian with respect to a carefully chosen line bundle.

[1]  Amnon Besser,et al.  p-adic heights and Vologodsky integration , 2017, Journal of Number Theory.

[2]  B. Poonen THE METHOD OF CHABAUTY AND COLEMAN WILLIAM MCCALLUM AND , 2017 .

[3]  M. Stoll An explicit theory of heights for hyperelliptic Jacobians of genus three , 2017, 1701.00772.

[4]  Robert W. Bradshaw,et al.  Explicit Coleman Integration for Hyperelliptic Curves , 2010, ANTS.

[5]  Jennifer S. Balakrishnan,et al.  Explicit Coleman integration for curves , 2017, Math. Comput..

[6]  M. Stoll,et al.  The Mordell-Weil sieve : proving non-existence of rational points on curves , 2009, 0906.1934.

[7]  Shiva Chidambaram,et al.  Quadratic Chabauty for Atkin–Lehner quotients of modular curves of prime level and genus 4, 5, 6 , 2021, Acta Arithmetica.

[8]  E. Kaya Explicit Vologodsky integration for hyperelliptic curves , 2020, Math. Comput..

[9]  Jennifer S. Balakrishnan,et al.  Quadratic Chabauty for modular curves: Algorithms and examples , 2021 .

[10]  G. Faltings Endlichkeitssätze für abelsche Varietäten über Zahlkörpern , 1983 .

[11]  Jennifer S. Balakrishnan Iterated Coleman integration for hyperelliptic curves , 2013 .

[12]  Minhyong Kim The motivic fundamental group of P1∖{0,1,∞} and the theorem of Siegel , 2005 .

[13]  B. Mazur,et al.  Canonical Height Pairings via Biextensions , 1983 .

[14]  Jennifer S. Balakrishnan,et al.  Explicit quadratic Chabauty over number fields , 2019, Israel Journal of Mathematics.

[15]  Walter Gubler,et al.  A tropical approach to nonarchimedean Arakelov geometry , 2014, 1406.7637.

[16]  N. Dogra,et al.  Quadratic Chabauty for modular curves and modular forms of rank one , 2019, Mathematische Annalen.

[17]  L. A. Betts The motivic anabelian geometry of local heights on abelian varieties , 2017, 1706.04850.

[18]  Simone Wannemaker,et al.  Fundamentals Of Diophantine Geometry , 2016 .

[19]  Walter Gubler Local and canonical heights of subvarieties , 2003 .

[20]  J. Nekovář On p-adic height pairings , 2002 .

[22]  GEOMETRIC QUADRATIC CHABAUTY , 2019, 1910.10752.

[23]  p-adic Arakelov theory , 2003, math/0301029.

[24]  S. Siksek Explicit Chabauty over number fields , 2010, 1010.2603.

[25]  E. Bombieri,et al.  Heights in Diophantine Geometry , 2006 .

[26]  Antoine Chambert-Loir Heights and measures on analytic spaces. A survey of recent results, and some remarks , 2010, 1001.2517.

[27]  Y. Zarhin p -Adic Heights On Abelian Varieties , 1990 .

[28]  Sarah Livia Zerbes,et al.  Vologodsky integration on curves with semi-stable reduction , 2017, Israel Journal of Mathematics.

[29]  Jennifer S. Balakrishnan,et al.  Computing integral points on hyperelliptic curves using quadratic Chabauty , 2015, Math. Comput..

[30]  J. S. Muller,et al.  Canonical heights on genus-2 Jacobians , 2016, 1603.00640.

[31]  Geometric quadratic Chabauty over number fields , 2021, 2108.05235.

[32]  The p-adic height pairings of Coleman-Gross and of Nekovar , 2002, math/0209006.

[33]  Robert F. Coleman,et al.  Torsion points on curves and p-adic Abelian integrals , 1985 .

[34]  Jennifer S. Balakrishnan,et al.  Computing local p-adic height pairings on hyperelliptic curves , 2010, 1010.6009.

[35]  Jennifer S. Balakrishnan,et al.  Explicit Chabauty—Kim for the split Cartan modular curve of level 13 , 2017, Annals of Mathematics.

[36]  I. Barsotti Factor sets and differentials on abelian varieties , 1957 .

[37]  Netan Dogra,et al.  Ramification of \'etale path torsors and harmonic analysis on graphs , 2019 .

[39]  Nigel P. Smart,et al.  Canonical heights on the jacobians of curves of genus 2 and the infinite descent , 1997 .

[40]  Shou-wu Zhang SMALL POINTS AND ADELIC METRICS , 1994 .

[41]  Eric Katz,et al.  p-adic Integration on Bad Reduction Hyperelliptic Curves , 2020, 2003.03400.

[42]  Jennifer S. Balakrishnan,et al.  Quadratic Chabauty and rational points, I: p-adic heights , 2016, Duke Mathematical Journal.

[43]  Jennifer S. Balakrishnan,et al.  Quadratic Chabauty and Rational Points II: Generalised Height Functions on Selmer Varieties , 2017, International Mathematics Research Notices.

[44]  Michael Stoll,et al.  On the height constant for curves of genus two, II , 1999 .

[45]  Amnon Besser Coleman integration using the Tannakian formalism , 2000, math/0011269.

[46]  Serge Lang,et al.  Abelian varieties , 1983 .