In Vivo 7-Tesla MRI Investigation of Brain Iron and Its Metabolic Correlates in Chronic Schizophrenia

[1]  D. Dexter,et al.  Iron, Neuroinflammation and Neurodegeneration , 2022, International journal of molecular sciences.

[2]  R. Dirksen,et al.  Iron Dysregulation in Mitochondrial Dysfunction and Alzheimer’s Disease , 2022, Antioxidants.

[3]  Jingliang Cheng,et al.  Brain iron assessment in patients with First-episode schizophrenia using quantitative susceptibility mapping , 2021, NeuroImage: Clinical.

[4]  C. Pantelis,et al.  Systematic Review: Quantitative Susceptibility Mapping (QSM) of Brain Iron Profile in Neurodegenerative Diseases , 2021, Frontiers in Neuroscience.

[5]  R. Kreis,et al.  Minimum Reporting Standards for in vivo Magnetic Resonance Spectroscopy (MRSinMRS): Experts' consensus recommendations , 2021, NMR in biomedicine.

[6]  Leigh A. Johnston,et al.  QSMART: Quantitative susceptibility mapping artifact reduction technique , 2021, NeuroImage.

[7]  P. Kwan,et al.  Seven‐tesla quantitative magnetic resonance spectroscopy of glutamate, γ‐aminobutyric acid, and glutathione in the posterior cingulate cortex/precuneus in patients with epilepsy , 2020, Epilepsia.

[8]  P. Kwan,et al.  Reproducibility of Glutamate, Glutathione, and GABA Measurements in vivo by Single-Voxel STEAM Magnetic Resonance Spectroscopy at 7-Tesla in Healthy Individuals , 2020, Frontiers in Neuroscience.

[9]  Kohske Takahashi,et al.  Welcome to the Tidyverse , 2019, J. Open Source Softw..

[10]  R. Irizarry ggplot2 , 2019, Introduction to Data Science.

[11]  S. Heckers,et al.  Hyperactivity and Reduced Activation of Anterior Hippocampus in Early Psychosis. , 2019, The American journal of psychiatry.

[12]  W. Xiong,et al.  Axonal iron transport in the brain modulates anxiety-related behaviors , 2019, Nature Chemical Biology.

[13]  Ninon Burgos,et al.  New advances in the Clinica software platform for clinical neuroimaging studies , 2019 .

[14]  M. Cuénod,et al.  MMP9/RAGE pathway overactivation mediates redox dysregulation and neuroinflammation, leading to inhibitory/excitatory imbalance: a reverse translation study in schizophrenia patients , 2019, Molecular Psychiatry.

[15]  F. Turkheimer,et al.  Neuroinflammation in schizophrenia: meta-analysis of in vivo microglial imaging studies , 2018, Psychological Medicine.

[16]  Siegfried Trattnig,et al.  The influence of brain iron and myelin on magnetic susceptibility and effective transverse relaxation - A biochemical and histological validation study , 2018, NeuroImage.

[17]  R. Mailman,et al.  Susceptibility MRI captures nigral pathology in patients with parkinsonian syndromes , 2018, Movement disorders : official journal of the Movement Disorder Society.

[18]  D Louis Collins,et al.  Warping an atlas derived from serial histology to 5 high-resolution MRIs , 2018, Scientific Data.

[19]  L. Xin,et al.  Magnetic Resonance Spectroscopy in Schizophrenia: Evidence for Glutamatergic Dysfunction and Impaired Energy Metabolism , 2018, Neurochemical Research.

[20]  G. Weiss,et al.  Dopamine promotes cellular iron accumulation and oxidative stress responses in macrophages , 2018, Biochemical pharmacology.

[21]  Se Young Chun,et al.  Specific visualization of neuromelanin-iron complex and ferric iron in the human post-mortem substantia nigra using MR relaxometry at 7T , 2017, NeuroImage.

[22]  Wolfgang M Pauli,et al.  Descriptor : A high-resolution probabilistic in vivo atlas of human subcortical brain nuclei , 2018 .

[23]  B. Stockwell,et al.  Ferroptosis: A Regulated Cell Death Nexus Linking Metabolism, Redox Biology, and Disease , 2017, Cell.

[24]  R. Roberts Postmortem studies on mitochondria in schizophrenia , 2017, Schizophrenia Research.

[25]  S. Strack,et al.  An emerging role for mitochondrial dynamics in schizophrenia , 2017, Schizophrenia Research.

[26]  Peter Savadjiev,et al.  Characterizing white matter changes in chronic schizophrenia: A free-water imaging multi-site study , 2017, Schizophrenia Research.

[27]  C. Pantelis,et al.  Dopamine, fronto-striato-thalamic circuits and risk for psychosis , 2017, Schizophrenia Research.

[28]  Oliver Bieri,et al.  Assessing White Matter Microstructure in Brain Regions with Different Myelin Architecture Using MRI , 2016, PloS one.

[29]  S. A. Wijtenburg,et al.  Elevated brain lactate in schizophrenia: a 7 T magnetic resonance spectroscopy study , 2016, Translational Psychiatry.

[30]  P. Sijens,et al.  Diagnostic value of MRS-quantified brain tissue lactate level in identifying children with mitochondrial disorders , 2016, European Radiology.

[31]  K. Double,et al.  Iron and dopamine: a toxic couple. , 2016, Brain : a journal of neurology.

[32]  Wei Cao,et al.  A method for estimating and removing streaking artifacts in quantitative susceptibility mapping , 2015, NeuroImage.

[33]  M. Berk,et al.  Mitochondrial dysfunction in schizophrenia: Pathways, mechanisms and implications , 2015, Neuroscience & Biobehavioral Reviews.

[34]  Jian-Qiang Lu,et al.  Validation of quantitative susceptibility mapping with Perls' iron staining for subcortical gray matter , 2015, NeuroImage.

[35]  M. Mallar Chakravarty,et al.  Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates , 2014, NeuroImage.

[36]  Jeff H Duyn,et al.  The role of iron in brain ageing and neurodegenerative disorders , 2014, The Lancet Neurology.

[37]  Stephen M. Smith,et al.  Permutation inference for the general linear model , 2014, NeuroImage.

[38]  M. Toborek,et al.  Neuroinflammation and Neurodegeneration , 2014, Springer New York.

[39]  D. Collins,et al.  Performing label‐fusion‐based segmentation using multiple automatically generated templates , 2013, Human brain mapping.

[40]  Peng Lei,et al.  A delicate balance: Iron metabolism and diseases of the brain , 2013, Front. Aging Neurosci..

[41]  Milan Sonka,et al.  3D Slicer as an image computing platform for the Quantitative Imaging Network. , 2012, Magnetic resonance imaging.

[42]  Edward T. Bullmore,et al.  Schizophrenia, neuroimaging and connectomics , 2012, NeuroImage.

[43]  Ferdinand Schweser,et al.  Quantitative susceptibility mapping (QSM) as a means to measure brain iron? A post mortem validation study , 2012, NeuroImage.

[44]  Bruce Fischl,et al.  FreeSurfer , 2012, NeuroImage.

[45]  Vincent van de Ven,et al.  Interhemispheric hypoconnectivity in schizophrenia: Fiber integrity and volume differences of the corpus callosum in patients and unaffected relatives , 2012, NeuroImage.

[46]  Zang-Hee Cho,et al.  Spatially dependent filtering for removing phase distortions at the cortical surface , 2011, Magnetic resonance in medicine.

[47]  J. Connor,et al.  Increased cellular iron levels affect matrix metalloproteinase expression and phagocytosis in activated microglia , 2011, Neuroscience Letters.

[48]  Bing Wu,et al.  Quantitative susceptibility mapping of human brain reflects spatial variation in tissue composition , 2011, NeuroImage.

[49]  T. Woo,et al.  Oxidative stress in schizophrenia: An integrated approach , 2011, Neuroscience & Biobehavioral Reviews.

[50]  Robert C. Knowlton,et al.  Assessments of Function and Biochemistry of the Anterior Cingulate Cortex in Schizophrenia , 2010, Biological Psychiatry.

[51]  C. Westin,et al.  Corpus Callosum Abnormalities and Their Association with Psychotic Symptoms in Patients with Schizophrenia , 2010, Biological Psychiatry.

[52]  Hadley Wickham,et al.  ggplot2 - Elegant Graphics for Data Analysis (2nd Edition) , 2017 .

[53]  A W Toga,et al.  Brain surface contraction mapped in first-episode schizophrenia: a longitudinal magnetic resonance imaging study , 2009, Molecular Psychiatry.

[54]  S. Kapur,et al.  The dopamine hypothesis of schizophrenia: version III--the final common pathway. , 2009, Schizophrenia bulletin.

[55]  Joe McCarthy,et al.  An integrated approach , 2001 .

[56]  Tyrone D. Cannon,et al.  Progressive brain structural changes mapped as psychosis develops in ‘at risk’ individuals , 2009, Schizophrenia Research.

[57]  Stephen M. Smith,et al.  Threshold-free cluster enhancement: Addressing problems of smoothing, threshold dependence and localisation in cluster inference , 2009, NeuroImage.

[58]  J. Beard,et al.  Dopamine D2 receptor expression is altered by changes in cellular iron levels in PC12 cells and rat brain tissue. , 2008, The Journal of nutrition.

[59]  N. Makris,et al.  Anatomic brain magnetic resonance imaging of the basal ganglia in pediatric bipolar disorder. , 2007, Journal of Affective Disorders.

[60]  Poorvi Kaushik,et al.  Dynamics of tyrosine hydroxylase mediated regulation of dopamine synthesis , 2007, Journal of Computational Neuroscience.

[61]  Guido Gerig,et al.  User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability , 2006, NeuroImage.

[62]  S. Ragsdale,et al.  Reduction and oxidation of the active site iron in tyrosine hydroxylase: kinetics and specificity. , 2006, Biochemistry.

[63]  J. Gee,et al.  Geodesic estimation for large deformation anatomical shape averaging and interpolation , 2004, NeuroImage.

[64]  C. Konradi,et al.  Hippocampal neurons in schizophrenia , 2002, Journal of Neural Transmission.

[65]  A. Dale,et al.  Whole Brain Segmentation Automated Labeling of Neuroanatomical Structures in the Human Brain , 2002, Neuron.

[66]  R. McCarley,et al.  A review of MRI findings in schizophrenia , 2001, Schizophrenia Research.

[67]  R. Gruetter,et al.  In vivo 1H NMR spectroscopy of rat brain at 1 ms echo time , 1999, Magnetic resonance in medicine.

[68]  E. Yeterian,et al.  MRI-Based Topographic Parcellation of Human Cerebral White Matter and Nuclei II. Rationale and Applications with Systematics of Cerebral Connectivity , 1999, NeuroImage.

[69]  S. Provencher Estimation of metabolite concentrations from localized in vivo proton NMR spectra , 1993, Magnetic resonance in medicine.

[70]  J. Kleinman,et al.  A postmortem quantitative study of iron in the globus pallidus of schizophrenic patients , 1990, Biological Psychiatry.

[71]  H. Holcomb,et al.  Correlations Between rCBF and Symptoms in Two Independent Cohorts of Drug-Free Patients with Schizophrenia , 2006, Neuropsychopharmacology.

[72]  Dennis Velakoulis,et al.  Structural brain imaging evidence for multiple pathological processes at different stages of brain development in schizophrenia. , 2005, Schizophrenia bulletin.

[73]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[74]  K. Jellinger,et al.  Brain iron and schizophrenia , 1993 .

[75]  J. Kleinman,et al.  Staining intensity of brain iron in patients with schizophrenia: a postmortem study. , 1992, The Journal of neuropsychiatry and clinical neurosciences.

[76]  G. E. Alexander,et al.  Parallel organization of functionally segregated circuits linking basal ganglia and cortex. , 1986, Annual review of neuroscience.