Rescaled Objective Solutions of Fokker-Planck and Boltzmann equations

We study the long-time behavior of symmetric solutions of the nonlinear Boltzmann equation and a closely related nonlinear Fokker-Planck equation. If the symmetry of the solutions corresponds to shear flows, the existence of stationary solutions can be ruled out because the energy is not conserved. After anisotropic rescaling both equations conserve the energy. We show that the rescaled Boltzmann equation does not admit stationary densities of Maxwellian type (exponentially decaying). For the rescaled Fokker-Planck equation we demonstrate that all solutions converge to a Maxwellian in the long-time limit, however the convergence rate is only algebraic, not exponential.

[1]  Margaret Beck,et al.  Metastability and rapid convergence to quasi-stationary bar states for the two-dimensional Navier–Stokes equations , 2013, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[2]  Alessia Nota,et al.  Long-Time Asymptotics for Homoenergetic Solutions of the Boltzmann Equation: Collision-Dominated Case , 2018, J. Nonlinear Sci..

[3]  R. James,et al.  Nonequilibrium molecular dynamics for bulk materials and nanostructures , 2010 .

[4]  T. Goudon On boltzmann equations and fokker—planck asymptotics: Influence of grazing collisions , 1997 .

[5]  Ansgar Jüngel,et al.  Entropy Dissipation Methods for Degenerate ParabolicProblems and Generalized Sobolev Inequalities , 2001 .

[6]  R. Illner,et al.  The mathematical theory of dilute gases , 1994 .

[7]  V. Garzó,et al.  Kinetic Theory of Gases in Shear Flows , 2003 .

[8]  M. Golubitsky,et al.  Singularities and groups in bifurcation theory , 1985 .

[9]  Alessia Nota,et al.  Self-Similar Profiles for Homoenergetic Solutions of the Boltzmann Equation: Particle Velocity Distribution and Entropy , 2017, Archive for Rational Mechanics and Analysis.

[10]  C. Mouhot,et al.  HYPOCOERCIVITY FOR LINEAR KINETIC EQUATIONS CONSERVING MASS , 2010, 1005.1495.

[11]  G. A. Pavliotis,et al.  Asymptotic analysis for the generalized Langevin equation , 2010, 1003.4203.

[12]  E. Carlen,et al.  An Analog of the 2-Wasserstein Metric in Non-Commutative Probability Under Which the Fermionic Fokker–Planck Equation is Gradient Flow for the Entropy , 2012, 1203.5377.

[13]  S. Mischler,et al.  Exponential Stability of Slowly Decaying Solutions to the Kinetic-Fokker-Planck Equation , 2014, Archive for Rational Mechanics and Analysis.

[14]  Cl'ement Mouhot Rate of Convergence to Equilibrium for the Spatially Homogeneous Boltzmann Equation with Hard Potentials , 2006 .

[15]  C. Villani,et al.  Celebrating Cercignani's conjecture for the Boltzmann equation , 2010, 1009.4006.

[16]  Spatially Inhomogenous On the trend to global equilibrium in spatially inhomogeneous entropy-dissipating systems : The linear Fokker-Planck equation , 2004 .

[17]  Richard D. James,et al.  Objective Molecular Dynamics , 2007 .

[18]  W. Marsden I and J , 2012 .

[19]  Wilfrid Gangbo,et al.  Solution of a Model Boltzmann Equation via Steepest Descent in the 2-Wasserstein Metric , 2004 .

[20]  R. James,et al.  Design of viscometers corresponding to a universal molecular simulation method , 2011, Journal of Fluid Mechanics.

[21]  Abdelaziz Rhandi,et al.  Non-autonomous Miyadera perturbations , 2000, Differential and Integral Equations.

[22]  Thierry Goudon,et al.  Equilibration Rate for the Linear Inhomogeneous Relaxation-Time Boltzmann Equation for Charged Particles , 2003 .

[23]  Giuseppe Toscani,et al.  ON CONVEX SOBOLEV INEQUALITIES AND THE RATE OF CONVERGENCE TO EQUILIBRIUM FOR FOKKER-PLANCK TYPE EQUATIONS , 2001 .

[24]  C. Villani,et al.  ON THE TREND TO EQUILIBRIUM FOR THE FOKKER-PLANCK EQUATION : AN INTERPLAY BETWEEN PHYSICS AND FUNCTIONAL ANALYSIS , 2004 .

[25]  ARTHUR SCHUSTER,et al.  The Kinetic Theory of Gases , 1895, Nature.

[26]  C. Villani,et al.  Generalization of an Inequality by Talagrand and Links with the Logarithmic Sobolev Inequality , 2000 .

[27]  Renjun Duan,et al.  Hypocoercivity of linear degenerately dissipative kinetic equations , 2009, 0912.1733.

[28]  Cédric Villani,et al.  On the trend to global equilibrium for spatially inhomogeneous kinetic systems: The Boltzmann equation , 2005 .

[29]  P. Kunstmann Heat Kernel Estimates and LP Spectral Independence of Elliptic Operators , 1999 .

[30]  Giuseppe Toscani,et al.  The Grazing Collision Limit of the Inelastic Kac Model around a Lévy-type Equilibrium , 2011, SIAM J. Math. Anal..

[31]  H. Frisch,et al.  Nonequilibrium Distribution Functions in a Fluid , 1960 .

[32]  F. Nier,et al.  Spectral asymptotics for large skew-symmetric perturbations of the harmonic oscillator , 2008, 0809.0574.