Entropy rigidity for cusped Hitchin representations

We establish an entropy rigidity theorem for Hitchin representations of all geometrically finite Fuchsian groups which generalizes a theorem of Potrie and Sambarino for Hitchin representations of closed surface groups. In the process, we introduce the class of (1, 1, 2)hypertransverse groups and show for such a group that the Hausdorff dimension of its conical limit set agrees with its (first) simple root entropy, providing a common generalization of results of Bishop and Jones, for Kleinian groups, and Pozzetti, Sambarino and Wienhard, for Anosov groups. We also introduce the theory of transverse representations of projectively visible groups as a tool for studying discrete subgroups of linear groups which are not necessarily Anosov or relatively Anosov.

[1]  Moduli spaces of local systems and higher Teichmüller theory , 2003, math/0311149.

[2]  J. Danciger,et al.  Convex cocompact actions in real projective geometry , 2017, 1704.08711.

[3]  B. H. Bowditch,et al.  Relatively hyperbolic Groups , 2012, Int. J. Algebra Comput..

[4]  Fanny Kassel,et al.  Anosov representations and proper actions , 2015, 1502.03811.

[5]  Mickael Crampon,et al.  Finitude géométrique en géométrie de Hilbert , 2014 .

[6]  F. Ledrappier,et al.  Fluctuations of ergodic sums for horocycle flows on $\Z^d$--covers of finite volume surfaces , 2008 .

[7]  Anosov representations and dominated splittings , 2016, Journal of the European Mathematical Society.

[8]  Andrew Zimmer,et al.  Cusped Hitchin representations and Anosov representations of geometrically finite Fuchsian groups , 2021 .

[9]  Jean-Pierre Otal,et al.  Séries de poincaré des groupes géométriquement finis , 2000 .

[10]  G. Lusztig Total Positivity in Reductive Groups , 2019 .

[11]  Jean-Franccois Quint Mesures de Patterson—Sullivan en rang supérieur , 2002 .

[12]  Yuval Peres,et al.  Fractals in Probability and Analysis , 2017 .

[13]  Andr'es Sambarino,et al.  Quantitative properties of convex representations , 2011, 1104.4705.

[14]  Alan F. Beardon,et al.  Limit points of Kleinian groups and finite sided fundamental polyhedra , 1974 .

[15]  Omri Sarig,et al.  Lecture Notes on Thermodynamic Formalism for Topological Markov Shifts , 2009 .

[16]  G. Margulis,et al.  Semigroups containing proximal linear maps , 1995 .

[17]  Pekka Tukia,et al.  On isomorphisms of geometrically finite Möbius groups , 1985 .

[18]  M. Kapovich,et al.  Relativizing characterizations of Anosov subgroups, I , 2018, 1807.00160.

[19]  M. B. Pozzetti,et al.  Conformality for a robust class of non-conformal attractors , 2019, 1902.01303.

[20]  Amalgam Anosov representations , 2014, 1411.2288.

[21]  Anosov representations: domains of discontinuity and applications , 2011, 1108.0733.

[22]  Mitul Islam,et al.  A flat torus theorem for convex co‐compact actions of projective linear groups , 2019, Journal of the London Mathematical Society.

[23]  Y. Benoist Propriétés Asymptotiques des Groupes Linéaires , 1997 .

[24]  R. Bowen,et al.  Markov maps associated with fuchsian groups , 1979 .

[25]  Harrison Bray,et al.  Pressure metrics for cusped Hitchin components , 2021, 2111.07493.

[26]  Andr'es Sambarino,et al.  The pressure metric for Anosov representations , 2013, 1301.7459.

[27]  D. Constantine,et al.  Strong symbolic dynamics for geodesic flows on CAT$(-1)$ spaces and other metric Anosov flows , 2018, Journal de l’École polytechnique — Mathématiques.

[28]  François Labourie,et al.  Cross Ratios and Identities for Higher Thurston Theory , 2006 .

[29]  A. Sambarino Infinitesimal Zariski closures of positive representations , 2020, 2012.10276.

[30]  O. Sarig Existence of gibbs measures for countable Markov shifts , 2003 .

[31]  Francis Bonahon Bouts des Varietes Hyperboliques de Dimension 3 , 1986 .

[32]  R. Brooks The bottom of the spectrum of a Riemannian covering. , 1985 .

[33]  Andrew Zimmer,et al.  Projective Anosov representations, convex cocompact actions, and rigidity , 2017, Journal of Differential Geometry.

[34]  Dennis Sullivan,et al.  On The Ergodic Theory at Infinity of an Arbitrary Discrete Group of Hyperbolic Motions , 1981 .

[35]  Yair N. Minsky,et al.  TENT PROPERTY AND DIRECTIONAL LIMIT SETS FOR SELF-JOININGS OF HYPERBOLIC MANIFOLDS , 2021 .

[36]  R. Potrie,et al.  Eigenvalues and entropy of a Hitchin representation , 2014, Inventiones mathematicae.

[37]  Anna Wienhard,et al.  Flows on the PSL(V)-Hitchin component , 2017, 1709.03580.

[38]  M. Peigné,et al.  SOME NEGATIVELY CURVED MANIFOLDS WITH CUSPS, MIXING AND COUNTING , 1998 .

[39]  Tengren Zhang,et al.  Weakly positive representations , 2020 .

[40]  M. Kapovich,et al.  Anosov subgroups: dynamical and geometric characterizations , 2017, 1703.01647.

[41]  Hausdorff dimension of limit sets for projective Anosov representations , 2019, 1902.01844.

[43]  The return sequence of the Bowen–Series map for punctured surfaces , 2004 .

[44]  Ludovic Marquis Around groups in Hilbert Geometry , 2013, 1303.7099.

[45]  Feng Zhu Relatively dominated representations , 2021, Annales de l'Institut Fourier.

[46]  Andr'es Sambarino,et al.  Hyperconvex representations and exponential growth , 2012, Ergodic Theory and Dynamical Systems.

[47]  D. Sullivan Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups , 1984 .

[48]  ON A THEOREM OF BEARDON AND MASKIT , 1996 .

[49]  Harrison Bray,et al.  Counting, equidistribution and entropy gaps at infinity with applications to cusped Hitchin representations , 2021 .

[50]  Christopher J. Bishop,et al.  Hausdorff dimension and Kleinian groups , 1994 .

[51]  N. Hitchin LIE-GROUPS AND TEICHMULLER SPACE , 1992 .