OPTICAL POLARIZATION AND SPECTRAL VARIABILITY IN THE M87 JET

During the last decade, M87's jet has been the site of an extraordinary variability event, with one knot (HST-1) increasing by over a factor 100 in brightness. Variability has also been seen on timescales of months in the nuclear flux. Here we discuss the optical-UV polarization and spectral variability of these components, which show vastly different behavior. HST-1 shows a highly significant correlation between flux and polarization, with P increasing from ~20% at minimum to >40% at maximum, while the orientation of its electric vector stayed constant. HST-1's optical-UV spectrum is very hard (αUV-O ~ 0.5, F ν∝ν–α), and displays "hard lags" during epochs 2004.9-2005.5, including the peak of the flare, with soft lags at later epochs. We interpret the behavior of HST-1 as enhanced particle acceleration in a shock, with cooling from both particle aging and the relaxation of the compression. We set 2σ upper limits of 0.5δ pc and 1.02c on the size and advance speed of the flaring region. The slight deviation of the electric vector orientation from the jet position angle (P.A.) makes it likely that on smaller scales the flaring region has either a double or twisted structure. By contrast, the nucleus displays much more rapid variability, with a highly variable electric vector orientation and "looping" in the (I, P) plane. The nucleus has a much steeper spectrum (αUV-O ~ 1.5) but does not show UV-optical spectral variability. Its behavior can be interpreted as either a helical distortion to a steady jet or a shock propagating through a helical jet.

[1]  S. Baum,et al.  ROTATION MEASURES ACROSS PARSEC-SCALE JETS OF FANAROFF-RILEY TYPE I RADIO GALAXIES , 2009, 0901.0913.

[2]  R. Walker,et al.  Imaging a Jet Base --- Prospects with M87 , 2008, 0803.1837.

[3]  Duccio Macchetto,et al.  The Optical-Near-Infrared Spectrum of the M87 Jet fromHubble Space Telescope Observations , 2000, astro-ph/0012044.

[4]  William B. Sparks,et al.  Optical and Radio Polarimetry of the M87 Jet at 02 Resolution , 1999, astro-ph/9901176.

[5]  S. Ciprini,et al.  The continuum spectral features of blazars in the optical region , 2004 .

[6]  R. Blandford,et al.  Semidynamical models of radio jets: relativistic beaming and source counts. , 1985 .

[7]  Stability properties of magnetic tower jets , 2006, astro-ph/0609007.

[8]  P. Kharb,et al.  Signatures of large-scale magnetic fields in AGN jets: transverse asymmetries , 2011, 1101.5149.

[9]  M. Aller,et al.  Polarized Radio Outbursts in Bl-Lacertae - Part Two - the Flux and Polarization of a Piston-Driven Shock , 1985 .

[10]  Eric S. Perlman,et al.  The X-Ray Emissions from the M87 Jet: Diagnostics and Physical Interpretation , 2005, astro-ph/0503024.

[11]  D. H. Roberts,et al.  Interpretation of VLBI Kinematic and Polarization Data: Application to 3C 345 , 1993 .

[12]  R. Laing,et al.  Magnetic fields in extragalactic radio sources. , 1980 .

[13]  P. Hardee,et al.  USING TWISTED FILAMENTS TO MODEL THE INNER JET IN M 87 , 2011, 1104.4480.

[14]  P. Hardee,et al.  THREE-DIMENSIONAL RELATIVISTIC MAGNETOHYDRODYNAMIC SIMULATIONS OF CURRENT-DRIVEN INSTABILITY WITH A SUB-ALFVÉNIC JET: TEMPORAL PROPERTIES , 2011, 1104.0549.

[15]  F. Massaro,et al.  FERMI LARGE AREA TELESCOPE GAMMA-RAY DETECTION OF THE RADIO GALAXY M87 , 2009, 0910.3565.

[16]  William B. Sparks,et al.  Month-Timescale Optical Variability in the M87 Jet , 2003, astro-ph/0311161.

[17]  Y. H. Zhang Cross-spectral analysis of the X-ray variability of Markarian 421 , 2002, astro-ph/0209063.

[18]  J. Wardle,et al.  The linear polarization of quasi-stellar radio sources at 3.71 and 11.1 centimeters. , 1974 .

[19]  L. Sironi,et al.  PARTICLE ACCELERATION IN RELATIVISTIC MAGNETIZED COLLISIONLESS ELECTRON–ION SHOCKS , 2010, 1009.0024.

[20]  Masanori Nakamura,et al.  A MAGNETOHYDRODYNAMIC MODEL OF THE M87 JET. I. SUPERLUMINAL KNOT EJECTIONS FROM HST-1 AS TRAILS OF QUAD RELATIVISTIC MHD SHOCKS , 2010, 1008.3512.

[21]  D. Uzdensky,et al.  Radiative properties of reconnection‐powered minijets in blazars , 2010, 1007.3994.

[22]  D. H. Roberts,et al.  High dynamic range VLA observations of eight core-dominated quasars , 1990 .

[23]  Juan P. Madrid,et al.  HUBBLE SPACE TELESCOPE OBSERVATIONS OF AN EXTRAORDINARY FLARE IN THE M87 JET , 2007, 0904.3546.

[24]  J. A. Biretta,et al.  VARIABILITY TIMESCALES IN THE M87 JET: SIGNATURES OF E2 LOSSES, DISCOVERY OF A QUASI PERIOD IN HST-1, AND THE SITE OF TeV FLARING , 2009, 0904.3925.

[25]  Faraday Rotation Measure Gradients from a Helical Magnetic Field in 3C 273 , 2005, astro-ph/0505357.

[26]  T. Belloni The jet paradigm : from microquasars to quasars , 2010 .

[27]  A. R. Bazer-Bachi,et al.  Fast Variability of Tera–Electron Volt γ Rays from the Radio Galaxy M87 , 2006, Science.

[28]  N. Vlahakis,et al.  Magnetic Driving of Relativistic Outflows in Active Galactic Nuclei. I. Interpretation of Parsec-Scale Accelerations , 2003, astro-ph/0310747.

[29]  M. Begelman Instability of Toroidal Magnetic Field in Jets and Plerions , 1997, astro-ph/9708142.

[30]  National Radio Astronomy Observatory,et al.  A first joint M87 campaign in 2008 from radio to TeV gamma-rays , 2009, 0907.1465.

[31]  W. Sparks,et al.  Optical Polarimetry of the Jets of Nearby Radio Galaxies. I. The Data , 2006, astro-ph/0606119.

[32]  Polarization and structure of relativistic parsec-scale AGN jets , 2004, astro-ph/0406144.

[33]  R. Laing A model for the magnetic-field structure in extended radio sources , 1980 .

[34]  H. Spruit Theory of Magnetically Powered Jets , 2008, 0804.3096.

[35]  E. Pian,et al.  Four Years of Monitoring Blazar PKS 2155–304 with BeppoSAX: Probing the Dynamics of the Jet , 2002, astro-ph/0202378.

[36]  D. E. Harris,et al.  APJ, ACCEPTED Preprint typeset using LATEX style emulateapj v. 6/22/04 THE OUTBURST OF HST-1 IN THE M87 JET , 2005 .

[37]  A. Levinson,et al.  RECOLLIMATION AND RADIATIVE FOCUSING OF RELATIVISTIC JETS: APPLICATIONS TO BLAZARS AND M87 , 2008, 0810.0562.

[38]  Felix A. Aharonian,et al.  Klein-Nishina effects in the spectra of non-thermal sources immersed in external radiation fields , 2005, astro-ph/0504388.

[39]  K. Serkowski,et al.  Polarization of Starlight , 1962 .

[40]  S. Iguchi,et al.  A Helical Magnetic Field in the jet of 3C 273(Session 1:Astrophysical Jets,High-Energy Emission from Accreting Compact Objects,Korea-Japan Seminar) , 2002, astro-ph/0205497.

[41]  D. E. Harris,et al.  Superluminal Radio Features in the M87 Jet and the Site of Flaring TeV Gamma-Ray Emission , 2007, 0705.2448.

[42]  K. Tsinganos,et al.  SYNTHETIC SYNCHROTRON EMISSION MAPS FROM MHD MODELS FOR THE JET OF M87 , 2009, 0901.2634.

[43]  M. Lister,et al.  MOJAVE: MONITORING OF JETS IN ACTIVE GALACTIC NUCLEI WITH VLBA EXPERIMENTS. VI. KINEMATICS ANALYSIS OF A COMPLETE SAMPLE OF BLAZAR JETS , 2009, 0909.5100.

[44]  J. A. Biretta,et al.  Flaring X-Ray Emission from HST-1, a Knot in the M87 Jet , 2003 .

[45]  N. Benı́tez,et al.  The Photometric Performance and Calibration of the Hubble Space Telescope Advanced Camera for Surveys , 2000, astro-ph/0507614.

[46]  William B. Sparks,et al.  HUBBLE SPACE TELESCOPE Observations of Superluminal Motion in the M87 Jet , 1999 .

[47]  Markus Boettcher,et al.  Time-dependent simulations of multiwavelength variability of the blazar Mrk 421 with a Monte Carlo multizone code , 2011, 1106.1865.

[48]  J. Tonry Surface Brightness Fluctuations: A Bridge from M31 to the Hubble Constant , 1991 .

[49]  et al,et al.  Is the Giant Radio Galaxy M 87 a TeV Gamma-Ray Emitter? , 2003 .

[50]  C. Waters,et al.  Ultraviolet HST Observations of the Jet in M87 , 2005, astro-ph/0502004.

[51]  M. Ostrowski,et al.  Dynamics and high-energy emission of the flaring HST-1 knot in the M 87 jet , 2006 .

[52]  H. Spruit,et al.  The role of kink instability in Poynting-flux dominated jets , 2006, astro-ph/0601172.

[53]  A. Tchekhovskoy,et al.  STABILITY OF RELATIVISTIC FORCE-FREE JETS , 2009, 0901.4775.

[54]  Geoffrey V. Bicknell,et al.  Understanding the Kiloparsec-Scale Structure of M87 , 1996 .

[55]  H. Spruit,et al.  Collimation of magnetically driven jets from accretion discs , 1997 .