Structural biology with carbon nanotube AFM probes.

Carbon nanotubes represent ideal probes for high-resolution structural and chemical imaging of biomolecules with atomic force microscopy. Recent advances in fabrication of carbon nanotube probes with sub-nanometer radii promise to yield unique insights into the structure, dynamics and function of biological macromolecules and complexes.

[1]  L. F. Sun,et al.  Materials: Creating the narrowest carbon nanotubes , 2000, Nature.

[2]  A. Horwich,et al.  Structure and function in GroEL-mediated protein folding. , 1998, Annual review of biochemistry.

[3]  Gerber,et al.  Atomic Force Microscope , 2020, Definitions.

[4]  Philip Kim,et al.  Single-walled carbon nanotube probes for high-resolution nanostructure imaging , 1998 .

[5]  Z. Shao,et al.  Imaging biological structures with the cryo atomic force microscope. , 1996, Biophysical journal.

[6]  A. Maiti,et al.  Structural flexibility of carbon nanotubes , 1996 .

[7]  C. Guillemette,et al.  Structural heterogeneity at the UDP-glucuronosyltransferase 1 locus: functional consequences of three novel missense mutations in the human UGT1A7 gene. , 2000, Pharmacogenetics.

[8]  David A. Kidwell,et al.  Sensing Discrete Streptavidin-Biotin Interactions with Atomic Force Microscopy , 1994 .

[9]  H. Dai,et al.  Nanotubes as nanoprobes in scanning probe microscopy , 1996, Nature.

[10]  Charles M. Lieber,et al.  Covalently functionalized nanotubes as nanometre- sized probes in chemistry and biology , 1998, Nature.

[11]  Charles M. Lieber,et al.  DIRECT GROWTH OF SINGLE-WALLED CARBON NANOTUBE SCANNING PROBE MICROSCOPY TIPS , 1999 .

[12]  Sung-Hou Kim Shining a light on structural genomics , 1998, Nature Structural Biology.

[13]  N. Isaacs,et al.  Methods for X-ray diffraction analysis of macromolecular structures. , 1999, Current opinion in chemical biology.

[14]  H. Gaub,et al.  Adhesion forces between individual ligand-receptor pairs. , 1994, Science.

[15]  Kurt Wüthrich,et al.  Protein recognition by NMR , 2000, Nature Structural Biology.

[16]  M. Porter,et al.  Nanometer-Scale Mapping of Chemically Distinct Domains at Well-Defined Organic Interfaces Using Frictional Force Microscopy , 1995 .

[17]  J P Glusker,et al.  X-ray crystallography of proteins. , 1994, Methods of biochemical analysis.

[18]  NMR - This Other Method for Protein and Nucleic Acid Structure Determination , 1995 .

[19]  J. Vesenka,et al.  Colloidal gold particles as an incompressible atomic force microscope imaging standard for assessing the compressibility of biomolecules. , 1993, Biophysical journal.

[20]  David Keller,et al.  Scanning force microscopy of nucleic acids and nucleoprotein assemblies , 1993 .

[21]  H. Hansma,et al.  Atomic force microscopy and other scanning probe microscopies. , 1998, Current opinion in chemical biology.

[22]  C. Lieber,et al.  Chemically-Sensitive Imaging in Tapping Mode by Chemical Force Microscopy: Relationship between Phase Lag and Adhesion , 1998 .

[23]  Charles M. Lieber,et al.  Chemical Force Microscopy: Exploiting Chemically-Modified Tips To Quantify Adhesion, Friction, and Functional Group Distributions in Molecular Assemblies , 1995 .

[24]  Charles M. Lieber,et al.  Carbon nanotube atomic force microscopy tips: direct growth by chemical vapor deposition and application to high-resolution imaging. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[25]  B. L. Smith,et al.  Biological applications of the AFM: From single molecules to organs , 1997, Int. J. Imaging Syst. Technol..

[26]  R. Henderson The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules , 1995, Quarterly Reviews of Biophysics.

[27]  Charles M. Lieber,et al.  Direct haplotyping of kilobase-size DNA using carbon nanotube probes , 2000, Nature Biotechnology.

[28]  Katsumi Tanigaki,et al.  Opening and purification of carbon nanotubes in high yields , 1995 .

[29]  G. Siegal,et al.  Biomolecular NMR: Recent Advances in Liquids, Solids, and Screening , 2000 .

[30]  Charles M. Lieber,et al.  Stretching and breaking duplex DNA by chemical force microscopy. , 1997, Chemistry & biology.

[31]  Charles M. Lieber,et al.  Functional Group Imaging by Chemical Force Microscopy , 1994, Science.

[32]  Charles M. Lieber,et al.  Chemical Force Microscopy , 1997, Microscopy and Microanalysis.

[33]  J. Lu,et al.  Elastic Properties of Carbon Nanotubes and Nanoropes , 1997, cond-mat/9704219.

[34]  Jian Ping Lu Elastic Properties of Carbon Nanotubes and Nanoropes , 1997 .

[35]  C. L. Cheung,et al.  Growth and fabrication with single-walled carbon nanotube probe microscopy tips , 2000 .

[36]  Charles M. Lieber,et al.  Functionalization of carbon nanotube AFM probes using tip-activated gases , 1999 .

[37]  Z. Shao,et al.  High resolution surface structure of E. coli GroES oligomer by atomic force microscopy , 1996, FEBS letters.

[38]  Charles M. Lieber,et al.  Covalently-Functionalized Single-Walled Carbon Nanotube Probe Tips for Chemical Force Microscopy , 1998 .

[39]  J L Sussman,et al.  Three-dimensional structures of avidin and the avidin-biotin complex. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[40]  Klaus Schulten,et al.  Mechanical unfolding intermediates in titin modules , 1999, Nature.

[41]  R. Glaeser Review: electron crystallography: present excitement, a nod to the past, anticipating the future. , 1999, Journal of structural biology.

[42]  Kenneth A. Smith,et al.  Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide , 1999 .

[43]  Paul K. Hansma,et al.  Biological applications of the AFM: From single molecules to organs , 1997 .

[44]  J. Fritz,et al.  Probing single biomolecules with atomic force microscopy. , 1997, Journal of structural biology.

[45]  Charles M. Lieber,et al.  Growth of nanotubes for probe microscopy tips , 1999, Nature.

[46]  A. Engel,et al.  Electrostatically balanced subnanometer imaging of biological specimens by atomic force microscope. , 1999, Biophysical journal.

[47]  D. Keller,et al.  Scanning force microscopy under aqueous solutions. , 1997, Current opinion in structural biology.

[48]  R. Nicoll,et al.  Plaque-independent disruption of neural circuits in Alzheimer's disease mouse models. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[49]  Kenneth A. Smith,et al.  Catalytic growth of single-wall carbon nanotubes from metal particles , 1998 .

[50]  D. Davies,et al.  Three-dimensional structure of an intact human immunoglobulin. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Erik Dujardin,et al.  Young's modulus of single-walled nanotubes , 1998 .

[52]  Charles M. Lieber,et al.  Force Titrations and Ionization State Sensitive Imaging of Functional Groups in Aqueous Solutions by Chemical Force Microscopy , 1997 .

[53]  Seiji Akita,et al.  Carbon-nanotube tips for scanning probe microscopy: Preparation by a controlled process and observation of deoxyribonucleic acid , 1999 .

[54]  Peter T. Lansbury,et al.  Carbon Nanotube Tips: High-Resolution Probes for Imaging Biological Systems , 1998 .

[55]  Charles M. Lieber,et al.  Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes , 1997 .

[56]  Veerle Baekelandt,et al.  Early Phenotypic Changes in Transgenic Mice That Overexpress Different Mutants of Amyloid Precursor Protein in Brain* , 1999, The Journal of Biological Chemistry.

[57]  Peter T. Lansbury,et al.  Observation of metastable Aβ amyloid protofibrils by atomic force microscopy , 1997 .