A Prime Decomposition of Probabilistic Automata

A definition of a probabilistic automaton is formulated in which its prime decomposition follows as a direct consequence of Krohn-Rhodes theorem. We first characterize the local structure of probabilistic automata. The prime decomposition is presented as a framework to study the global structure of probabilistic automata. We prove that the representation theory of a probabilistic automaton is determined by that of the finite groups in its holonomy decomposition.

[1]  H. P. Zeige,et al.  Cascade Synthesis of Finite-State Machines , 2004 .

[2]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[3]  W. D. Munn,et al.  On semigroup algebras , 1955, Mathematical Proceedings of the Cambridge Philosophical Society.

[4]  D. Rees,et al.  On semi-groups , 1940, Mathematical Proceedings of the Cambridge Philosophical Society.

[5]  Azaria Paz,et al.  Probabilistic automata , 2003 .

[6]  J. Doob Topics in the theory of Markoff chains , 1942 .

[7]  Christel Baier,et al.  Probabilistic ω-automata , 2012, JACM.

[8]  J. Rhodes,et al.  Algebraic theory of machines. I. Prime decomposition theorem for finite semigroups and machines , 1965 .

[9]  Berndt Farwer,et al.  ω-automata , 2002 .

[10]  A. Clifford,et al.  The algebraic theory of semigroups , 1964 .

[11]  A. D. Wallace,et al.  Stability in semigroups , 1957 .

[12]  R. Plemmons,et al.  Doubly stochastic matrix equations , 1973 .

[13]  Benjamin Steinberg,et al.  The q-theory of Finite Semigroups , 2008 .

[14]  J. A. Green,et al.  On the Structure of Semigroups , 1951 .

[15]  Benjamin Steinberg,et al.  On the irreducible representations of a finite semigroup , 2007, 0712.2076.

[16]  Mario Petrich,et al.  Irreducible matrix representations of finite semigroups , 1969 .

[17]  A. H. Clifford,et al.  Matrix Representations of Completely Simple Semigroups , 1942 .

[18]  H. Paul Zeiger Yet another proof of the cascade decomposition theorem for finite automata , 2005, Mathematical systems theory.

[19]  J. Wall Green''s relations for stochastic matrices , 1975 .

[20]  Karsten Henckell,et al.  Prime decomposition theorem for arbitrary semigroups: general holonomy decomposition and synthesis theorem , 1988 .