Low temperature heat capacity of Na4UO5 and Na4NpO5
暂无分享,去创建一个
Eric Colineau | R. Konings | G. Wallez | A. L. Smith | E. Colineau | Jean-Christophe Griveau | Philippe E. Raison | R.J.M. Konings | J. Griveau | Gilles Wallez | A. L. Smith | P. Raison | A. L. Smith
[1] C Hennig,et al. A 23Na magic angle spinning nuclear magnetic resonance, XANES, and high-temperature X-ray diffraction study of NaUO3, Na4UO5, and Na2U2O7. , 2014, Inorganic chemistry.
[2] T. Park,et al. Low temperature heat capacity study of Ba2TiSi2O8 and Sr2TiSi2O8 , 2014 .
[3] Rudy J. M. Konings,et al. Synthesis and crystal structure investigations of ternary oxides in the Na–Pu–O system , 2015 .
[4] O. Beneš,et al. The Thermodynamic Properties of the f-Elements and Their Compounds. I. The Lanthanide and Actinide Metals , 2010 .
[5] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[6] C. Keller,et al. THE REACTIONS OF TRANSURANIUM OXIDES WITH ALKALI OXIDES. II. TERNARY OXIDES OF PENTAVALENT TRANSURANIUM AND PROTACTINIUM WITH LITHIUM AND SODIUM , 1965 .
[7] R. D. Shannon. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .
[8] G. Nicolaou,et al. Transmutation of neptunium and americium in a fast neutron flux: EPMA results and KORIGEN predictions for the superfact fuels , 1995 .
[9] Philippe Martin,et al. A new look at the structural properties of trisodium uranate Na3UO4. , 2015, Inorganic chemistry.
[10] R. Guillaumont,et al. Update on the chemical thermodynamics of uranium, neptunium, plutonium, americium and technetium , 2003 .
[11] A. Navrotsky,et al. Phonon, Spin-Wave, and Defect Contributions to the Low-Temperature Specific Heat of α-FeOOH , 2003 .
[12] E. Cordfunke,et al. α- and βNa2UO4: Structural and Thermochemical Relationships , 1995 .
[13] R. Konings,et al. Synthesis and crystal structure characterisation of sodium neptunate compounds , 2011 .
[14] R. Swalin,et al. Thermodynamics of Solids , 1963 .
[15] D. W. Osborne,et al. Heat capacity of α-sodium uranate (α-Na2UO4) from 5 to 350 K. Standard Gibbs energy of formation at 298.15 K☆ , 1974 .
[16] E. Gopal. Specific Heats at Low Temperatures , 1966 .
[17] Eric Colineau,et al. X-ray Diffraction, Mössbauer Spectroscopy, Magnetic Susceptibility, and Specific Heat Investigations of Na4NpO5 and Na5NpO6. , 2015, Inorganic chemistry.
[18] C. Keller,et al. THE REACTIONS OF TRANSURANIUM OXIDES WITH ALKALI OXIDES. I. TERNARY OXIDES OF HEXAVALENT TRANSURANIUM WITH LITHIUM AND SODIUM , 1965 .
[19] P. Boulet,et al. Low-temperature heat capacity measurements on encapsulated transuranium samples , 2005 .
[20] A. Navrotsky,et al. Molar heat capacity and thermodynamic functions of zirconolite CaZrTi2O7 , 1999 .
[21] Juan Rodríguez-Carvajal,et al. Recent advances in magnetic structure determination by neutron powder diffraction , 1993 .
[22] F. Ingold,et al. Investigation of the UONa and (U,Pu)ONa phase diagrams — Study of Na3UO4 and Na3(U,Pu)O4 phases , 1993 .
[23] P. Svoboda,et al. Application of Neumann–Kopp rule for the estimation of heat capacity of mixed oxides , 2010 .
[24] J. Fuger. Thermochemistry of the alkali metal and alkaline earth-actinide complex oxides , 1985 .
[25] S. V. D. Berghe,et al. Antiferromagnetism in MUO3 (M=Na,K,Rb) studied by neutron diffraction , 2004 .
[26] Mark D. Smith,et al. Crystal growth of K2UO4 and Na4UO5 using hydroxide fluxes , 2010 .
[27] A. Navrotsky,et al. Molar heat capacity and thermodynamic functions forCaTiO3 , 1999 .
[28] M. W. Chase,et al. NIST-JANAF Thermochemical Tables, 4th Edition , 1998 .
[29] B. Woodfield,et al. Low temperature heat capacity Study of Fe(PO3)3 and Fe2P2O7 , 2013 .
[30] C. Keller,et al. Die reaktion der transuranoxide mit alkalioxiden—II: Ternäre oxide der fünfwertigen transurane und des protatiniums mit lithium und natrium , 1965 .
[31] L. Koch,et al. Minor actinide transmutation—a waste management option☆ , 1986 .
[32] Hans Wanner,et al. Chemical thermodynamics of uranium , 1992 .
[33] M. W. Chase. NIST-JANAF thermochemical tables , 1998 .
[34] J. L. Smith,et al. Critical examination of heat capacity measurements made on a Quantum Design physical property measurement system , 2003 .
[35] Attila Kovács,et al. Mass spectrometric study of the vaporization behaviour of α-Na2NpO4: Thermodynamic investigation of the enthalpy of formation , 2013 .
[36] Guangshe Li,et al. Heat capacities and thermodynamic functions of TiO2 anatase and rutile: Analysis of phase stability , 2009 .
[37] J. Fuger,et al. Thermodynamics of lanthanide and actinide perovskite-type and related oxides V. Molar enthalpies of formation of M2NpO4 (M = Li, Na, K, or Cs) and of β-Na4NpO5 , 1991 .
[38] C. Keller,et al. Die reaktion der oxide der transurane mit alkalioxiden—I: Ternäre oxide der sechswertigen transurane mit lithium und natrium , 1965 .