Low temperature heat capacity of Na4UO5 and Na4NpO5

The low temperature heat capacities of Na4UO5 and Na4NpO5 have been measured for the first time in the temperature range (1.9 to 292) K using a Quantum Design PPMS (Physical Property Measurement System) calorimeter. The experimental data have been fitted to theoretical functions below 20 K, and to a combination of Debye and Einstein functions above this temperature. The heat capacity and entropy values at T = 298.15 K have been derived as View the MathML sourceCp,mo(Na4UO5,cr,298.15K)=(220.6±6.7) J · K−1 · mol−1, View the MathML sourceSmo(Na4UO5,cr,298.15K)=(247.5±6.2) J · K−1 · mol−1, View the MathML sourceCp,mo(Na4NpO5,cr,298.15K)=(219.0±6.6) J · K−1 · mol−1, and View the MathML sourceSmo(Na4NpO5,cr,298.15K)=(247.5±6.2) J · K−1 · mol−1. When combined with the enthalpies of formation reported in the literature, these data yield standard entropies and Gibbs energies of formation as View the MathML sourceΔfSmo(Na4UO5,cr,298.15K)=-(520.8±6.3) J · K−1 · mol−1, View the MathML sourceΔfSmo(Na4NpO5,cr,298.15K)=-(521.0±6.3) J · K−1 · mol−1, View the MathML sourceΔfGmo(Na4UO5,cr,298.15K)=-(2301.7±2.9) kJ · mol−1 and View the MathML sourceΔfGmo(Na4NpO5,cr,298.15K)=-(2159.7±6.0) kJ · mol−1.

[1]  C Hennig,et al.  A 23Na magic angle spinning nuclear magnetic resonance, XANES, and high-temperature X-ray diffraction study of NaUO3, Na4UO5, and Na2U2O7. , 2014, Inorganic chemistry.

[2]  T. Park,et al.  Low temperature heat capacity study of Ba2TiSi2O8 and Sr2TiSi2O8 , 2014 .

[3]  Rudy J. M. Konings,et al.  Synthesis and crystal structure investigations of ternary oxides in the Na–Pu–O system , 2015 .

[4]  O. Beneš,et al.  The Thermodynamic Properties of the f-Elements and Their Compounds. I. The Lanthanide and Actinide Metals , 2010 .

[5]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[6]  C. Keller,et al.  THE REACTIONS OF TRANSURANIUM OXIDES WITH ALKALI OXIDES. II. TERNARY OXIDES OF PENTAVALENT TRANSURANIUM AND PROTACTINIUM WITH LITHIUM AND SODIUM , 1965 .

[7]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[8]  G. Nicolaou,et al.  Transmutation of neptunium and americium in a fast neutron flux: EPMA results and KORIGEN predictions for the superfact fuels , 1995 .

[9]  Philippe Martin,et al.  A new look at the structural properties of trisodium uranate Na3UO4. , 2015, Inorganic chemistry.

[10]  R. Guillaumont,et al.  Update on the chemical thermodynamics of uranium, neptunium, plutonium, americium and technetium , 2003 .

[11]  A. Navrotsky,et al.  Phonon, Spin-Wave, and Defect Contributions to the Low-Temperature Specific Heat of α-FeOOH , 2003 .

[12]  E. Cordfunke,et al.  α- and βNa2UO4: Structural and Thermochemical Relationships , 1995 .

[13]  R. Konings,et al.  Synthesis and crystal structure characterisation of sodium neptunate compounds , 2011 .

[14]  R. Swalin,et al.  Thermodynamics of Solids , 1963 .

[15]  D. W. Osborne,et al.  Heat capacity of α-sodium uranate (α-Na2UO4) from 5 to 350 K. Standard Gibbs energy of formation at 298.15 K☆ , 1974 .

[16]  E. Gopal Specific Heats at Low Temperatures , 1966 .

[17]  Eric Colineau,et al.  X-ray Diffraction, Mössbauer Spectroscopy, Magnetic Susceptibility, and Specific Heat Investigations of Na4NpO5 and Na5NpO6. , 2015, Inorganic chemistry.

[18]  C. Keller,et al.  THE REACTIONS OF TRANSURANIUM OXIDES WITH ALKALI OXIDES. I. TERNARY OXIDES OF HEXAVALENT TRANSURANIUM WITH LITHIUM AND SODIUM , 1965 .

[19]  P. Boulet,et al.  Low-temperature heat capacity measurements on encapsulated transuranium samples , 2005 .

[20]  A. Navrotsky,et al.  Molar heat capacity and thermodynamic functions of zirconolite CaZrTi2O7 , 1999 .

[21]  Juan Rodríguez-Carvajal,et al.  Recent advances in magnetic structure determination by neutron powder diffraction , 1993 .

[22]  F. Ingold,et al.  Investigation of the UONa and (U,Pu)ONa phase diagrams — Study of Na3UO4 and Na3(U,Pu)O4 phases , 1993 .

[23]  P. Svoboda,et al.  Application of Neumann–Kopp rule for the estimation of heat capacity of mixed oxides , 2010 .

[24]  J. Fuger Thermochemistry of the alkali metal and alkaline earth-actinide complex oxides , 1985 .

[25]  S. V. D. Berghe,et al.  Antiferromagnetism in MUO3 (M=Na,K,Rb) studied by neutron diffraction , 2004 .

[26]  Mark D. Smith,et al.  Crystal growth of K2UO4 and Na4UO5 using hydroxide fluxes , 2010 .

[27]  A. Navrotsky,et al.  Molar heat capacity and thermodynamic functions forCaTiO3 , 1999 .

[28]  M. W. Chase,et al.  NIST-JANAF Thermochemical Tables, 4th Edition , 1998 .

[29]  B. Woodfield,et al.  Low temperature heat capacity Study of Fe(PO3)3 and Fe2P2O7 , 2013 .

[30]  C. Keller,et al.  Die reaktion der transuranoxide mit alkalioxiden—II: Ternäre oxide der fünfwertigen transurane und des protatiniums mit lithium und natrium , 1965 .

[31]  L. Koch,et al.  Minor actinide transmutation—a waste management option☆ , 1986 .

[32]  Hans Wanner,et al.  Chemical thermodynamics of uranium , 1992 .

[33]  M. W. Chase NIST-JANAF thermochemical tables , 1998 .

[34]  J. L. Smith,et al.  Critical examination of heat capacity measurements made on a Quantum Design physical property measurement system , 2003 .

[35]  Attila Kovács,et al.  Mass spectrometric study of the vaporization behaviour of α-Na2NpO4: Thermodynamic investigation of the enthalpy of formation , 2013 .

[36]  Guangshe Li,et al.  Heat capacities and thermodynamic functions of TiO2 anatase and rutile: Analysis of phase stability , 2009 .

[37]  J. Fuger,et al.  Thermodynamics of lanthanide and actinide perovskite-type and related oxides V. Molar enthalpies of formation of M2NpO4 (M = Li, Na, K, or Cs) and of β-Na4NpO5 , 1991 .

[38]  C. Keller,et al.  Die reaktion der oxide der transurane mit alkalioxiden—I: Ternäre oxide der sechswertigen transurane mit lithium und natrium , 1965 .