A class of positive atomic maps

We construct a new class of positive indecomposable maps in the algebra of d × d complex matrices. These maps are characterized by the 'weakest' positivity property and for this reason they are called atomic. This class provides a new rich family of atomic entanglement witnesses which define an important tool for investigating quantum entanglement. It turns out that they are able to detect states with the 'weakest' quantum entanglement.

[1]  Man-Duen Choi Positive semidefinite biquadratic forms , 1975 .

[2]  Jun Tomiyama,et al.  Indecomposable Positive Maps in Matrix Algebras , 1988, Canadian Mathematical Bulletin.

[3]  John K. Tomfohr,et al.  Lecture Notes on Physics , 1879, Nature.

[4]  Marco Piani A class of 2^N x 2^N bound entangled states revealed by non-decomposable maps , 2004 .

[5]  J. Cirac,et al.  Optimization of entanglement witnesses , 2000, quant-ph/0005014.

[6]  Kil-Chan Ha,et al.  Construction of entangled states with positive partial transposes based on indecomposable positive linear maps , 2003, quant-ph/0310109.

[7]  M. Lewenstein,et al.  Schmidt number witnesses and bound entanglement , 2000, quant-ph/0009109.

[8]  Positive projections onto spin factors , 2002 .

[9]  State space structure and entanglement of rotationally invariant spin systems , 2005, quant-ph/0506224.

[10]  D. Chruściński,et al.  Class of positive partial transposition states , 2006 .

[11]  Seung-Hyeok Kye,et al.  Generalized Choi maps in three-dimensional matrix algebra , 1992 .

[12]  Roman S. Ingarden A Memorial Note on the 10th Anniversary of OSID , 2003, Open Syst. Inf. Dyn..

[13]  S. Woronowicz Positive maps of low dimensional matrix algebras , 1976 .

[14]  E. Størmer Positive linear maps of Cu * -algebras , 1974 .

[15]  Seung-Hyeok Kye,et al.  DUALITY FOR POSITIVE LINEAR MAPS IN MATRIX ALGEBRAS , 2000 .

[16]  Heinz-Peter Breuer Entanglement in SO(3)-invariant bipartite quantum systems , 2005 .

[17]  Andrzej Kossakowski,et al.  A Class of Linear Positive Maps in Matrix Algebras II , 2004, Open Syst. Inf. Dyn..

[18]  B. Terhal Bell inequalities and the separability criterion , 1999, quant-ph/9911057.

[19]  D. Chruściński,et al.  Circulant states with positive partial transpose , 2007, 0705.3534.

[20]  P. Horodecki,et al.  Schmidt number for density matrices , 1999, quant-ph/9911117.

[21]  William Hall,et al.  A new criterion for indecomposability of positive maps , 2006 .

[22]  Wai-Shing Tang On positive linear maps between matrix algebras , 1986 .

[23]  Kil-Chan Ha,et al.  Entangled states with positive partial transposes arising from indecomposable positive linear maps , 2003, quant-ph/0305005.

[24]  Kil-Chan Ha A class of atomic positive linear maps in matrix algebras , 2003 .

[25]  Kil-Chan Ha,et al.  Construction of 3 ⊗ 3 entangled edge states with positive partial transposes , 2005, quant-ph/0509079.

[26]  Pérès Separability Criterion for Density Matrices. , 1996, Physical review letters.

[27]  H. Osaka Indecomposable positive maps in low dimensional matrix algebras , 1991 .

[28]  Hong-Jong Kim,et al.  Indecomposable Extreme Positive Linear Maps in Matrix Algebras , 1994 .

[29]  S. Woronowicz Nonextendible positive maps , 1976 .

[30]  Hiroyuki Osaka,et al.  A series of absolutely indecomposable positive maps in matrix algebras , 1993 .

[31]  Kil-Chan Ha,et al.  Atomic positive linear maps in matrix algebras , 1998 .

[32]  A. Guyan Robertson Schwarz inequalities and the decomposition of positive maps on C *-algebras , 1983 .

[33]  B. M. Fulk MATH , 1992 .

[34]  F. Benatti,et al.  Quantum dynamical semigroups and non-decomposable positive maps , 2004 .

[35]  Seung-Hyeok Kye Facial structures for unital positive linear maps in the two-dimensional matrix algebra , 2003 .

[36]  William Arveson,et al.  Subalgebras ofC*-algebras , 1969 .

[37]  Andrew G. Glen,et al.  APPL , 2001 .

[38]  H. Breuer Optimal entanglement criterion for mixed quantum states. , 2006, Physical review letters.

[39]  Man-Duen Choi Completely positive linear maps on complex matrices , 1975 .

[40]  E. Størmer DECOMPOSABLE POSITIVE MAPS ON C*-ALGEBRAS , 1982 .

[41]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[42]  A. Jamiołkowski Linear transformations which preserve trace and positive semidefiniteness of operators , 1972 .

[43]  On the convex set of completely positive linear maps in matrix algebras , 1997 .

[44]  A. Robertson Positive Projections on C*-Algebras and an Extremal Positive Map , 1985 .

[45]  A. Robertson AUTOMORPHISMS OF SPIN FACTORS AND THE DECOMPOSITION OF POSITIVE MAPS , 1983 .

[46]  Andrzej Kossakowski,et al.  On the Structure of Entanglement Witnesses and New Class of Positive Indecomposable Maps , 2007, Open Syst. Inf. Dyn..

[47]  W. Majewski,et al.  On a characterization of positive maps , 2001 .

[48]  Rotationally invariant bipartite states and bound entanglement , 2007, quant-ph/0701222.

[49]  B. Terhal A family of indecomposable positive linear maps based on entangled quantum states , 1998, quant-ph/9810091.

[50]  H. Osaka A Class of Extremal Positive Maps in 3×3 Matrix Algebras , 1992 .

[51]  A. Robertson,et al.  Positive extensions of automorphisms of spin factors , 1983, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.