A class of positive atomic maps
暂无分享,去创建一个
[1] Man-Duen Choi. Positive semidefinite biquadratic forms , 1975 .
[2] Jun Tomiyama,et al. Indecomposable Positive Maps in Matrix Algebras , 1988, Canadian Mathematical Bulletin.
[3] John K. Tomfohr,et al. Lecture Notes on Physics , 1879, Nature.
[4] Marco Piani. A class of 2^N x 2^N bound entangled states revealed by non-decomposable maps , 2004 .
[5] J. Cirac,et al. Optimization of entanglement witnesses , 2000, quant-ph/0005014.
[6] Kil-Chan Ha,et al. Construction of entangled states with positive partial transposes based on indecomposable positive linear maps , 2003, quant-ph/0310109.
[7] M. Lewenstein,et al. Schmidt number witnesses and bound entanglement , 2000, quant-ph/0009109.
[8] Positive projections onto spin factors , 2002 .
[9] State space structure and entanglement of rotationally invariant spin systems , 2005, quant-ph/0506224.
[10] D. Chruściński,et al. Class of positive partial transposition states , 2006 .
[11] Seung-Hyeok Kye,et al. Generalized Choi maps in three-dimensional matrix algebra , 1992 .
[12] Roman S. Ingarden. A Memorial Note on the 10th Anniversary of OSID , 2003, Open Syst. Inf. Dyn..
[13] S. Woronowicz. Positive maps of low dimensional matrix algebras , 1976 .
[14] E. Størmer. Positive linear maps of Cu * -algebras , 1974 .
[15] Seung-Hyeok Kye,et al. DUALITY FOR POSITIVE LINEAR MAPS IN MATRIX ALGEBRAS , 2000 .
[16] Heinz-Peter Breuer. Entanglement in SO(3)-invariant bipartite quantum systems , 2005 .
[17] Andrzej Kossakowski,et al. A Class of Linear Positive Maps in Matrix Algebras II , 2004, Open Syst. Inf. Dyn..
[18] B. Terhal. Bell inequalities and the separability criterion , 1999, quant-ph/9911057.
[19] D. Chruściński,et al. Circulant states with positive partial transpose , 2007, 0705.3534.
[20] P. Horodecki,et al. Schmidt number for density matrices , 1999, quant-ph/9911117.
[21] William Hall,et al. A new criterion for indecomposability of positive maps , 2006 .
[22] Wai-Shing Tang. On positive linear maps between matrix algebras , 1986 .
[23] Kil-Chan Ha,et al. Entangled states with positive partial transposes arising from indecomposable positive linear maps , 2003, quant-ph/0305005.
[24] Kil-Chan Ha. A class of atomic positive linear maps in matrix algebras , 2003 .
[25] Kil-Chan Ha,et al. Construction of 3 ⊗ 3 entangled edge states with positive partial transposes , 2005, quant-ph/0509079.
[26] Pérès. Separability Criterion for Density Matrices. , 1996, Physical review letters.
[27] H. Osaka. Indecomposable positive maps in low dimensional matrix algebras , 1991 .
[28] Hong-Jong Kim,et al. Indecomposable Extreme Positive Linear Maps in Matrix Algebras , 1994 .
[29] S. Woronowicz. Nonextendible positive maps , 1976 .
[30] Hiroyuki Osaka,et al. A series of absolutely indecomposable positive maps in matrix algebras , 1993 .
[31] Kil-Chan Ha,et al. Atomic positive linear maps in matrix algebras , 1998 .
[32] A. Guyan Robertson. Schwarz inequalities and the decomposition of positive maps on C *-algebras , 1983 .
[33] B. M. Fulk. MATH , 1992 .
[34] F. Benatti,et al. Quantum dynamical semigroups and non-decomposable positive maps , 2004 .
[35] Seung-Hyeok Kye. Facial structures for unital positive linear maps in the two-dimensional matrix algebra , 2003 .
[36] William Arveson,et al. Subalgebras ofC*-algebras , 1969 .
[37] Andrew G. Glen,et al. APPL , 2001 .
[38] H. Breuer. Optimal entanglement criterion for mixed quantum states. , 2006, Physical review letters.
[39] Man-Duen Choi. Completely positive linear maps on complex matrices , 1975 .
[40] E. Størmer. DECOMPOSABLE POSITIVE MAPS ON C*-ALGEBRAS , 1982 .
[41] Thierry Paul,et al. Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.
[42] A. Jamiołkowski. Linear transformations which preserve trace and positive semidefiniteness of operators , 1972 .
[43] On the convex set of completely positive linear maps in matrix algebras , 1997 .
[44] A. Robertson. Positive Projections on C*-Algebras and an Extremal Positive Map , 1985 .
[45] A. Robertson. AUTOMORPHISMS OF SPIN FACTORS AND THE DECOMPOSITION OF POSITIVE MAPS , 1983 .
[46] Andrzej Kossakowski,et al. On the Structure of Entanglement Witnesses and New Class of Positive Indecomposable Maps , 2007, Open Syst. Inf. Dyn..
[47] W. Majewski,et al. On a characterization of positive maps , 2001 .
[48] Rotationally invariant bipartite states and bound entanglement , 2007, quant-ph/0701222.
[49] B. Terhal. A family of indecomposable positive linear maps based on entangled quantum states , 1998, quant-ph/9810091.
[50] H. Osaka. A Class of Extremal Positive Maps in 3×3 Matrix Algebras , 1992 .
[51] A. Robertson,et al. Positive extensions of automorphisms of spin factors , 1983, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.