Statistical analysis of solar wind parameters and geomagnetic indices during HILDCAA/HILDCAA∗ occurrences between 1998 and 2007

[1]  V. Klausner,et al.  An Alternative Method for Identifying Interplanetary Magnetic Cloud Regions , 2017 .

[2]  R. Hajra,et al.  A study on the main periodicities in interplanetary magnetic field Bz component and geomagnetic AE index during HILDCAA events using wavelet analysis , 2016 .

[3]  V. Klausner,et al.  An alternative way to identify local geomagnetically quiet days: a case study using wavelet analysis , 2016 .

[4]  B. Tsurutani,et al.  Relativistic electron acceleration during HILDCAA events: are precursor CIR magnetic storms important? , 2015, Earth, Planets and Space.

[5]  B. Tsurutani,et al.  RELATIVISTIC (E > 0.6, > 2.0, AND > 4.0 MeV) ELECTRON ACCELERATION AT GEOSYNCHRONOUS ORBIT DURING HIGH-INTENSITY, LONG-DURATION, CONTINUOUS AE ACTIVITY (HILDCAA) EVENTS , 2015 .

[6]  B. Tsurutani,et al.  Superposed epoch analyses of HILDCAAs and their interplanetary drivers: Solar cycle and seasonal dependences , 2014 .

[7]  Margarete Oliveira Domingues,et al.  Daubechies wavelet coefficients: a tool to study interplanetary magnetic field fluctuations , 2014, 1404.2835.

[8]  B. Tsurutani,et al.  Solar wind‐magnetosphere energy coupling efficiency and partitioning: HILDCAAs and preceding CIR storms during solar cycle 23 , 2014 .

[9]  B. Tsurutani,et al.  Relativistic electron acceleration during high‐intensity, long‐duration, continuous AE activity (HILDCAA) events: Solar cycle phase dependences , 2014 .

[10]  B. Tsurutani,et al.  Solar cycle dependence of High‐Intensity Long‐Duration Continuous AE Activity (HILDCAA) events, relativistic electron predictors? , 2013 .

[11]  Bruce T. Tsurutani,et al.  The Interplanetary Causes of Magnetic Storms: A Review , 2013 .

[12]  F. Guarnieri The Nature of Auroras During High‐Intensity Long‐Duration Continuous AE Activity (HILDCAA) Events: 1998 to 2001 , 2013 .

[13]  C. Russell Solar Wind and Interplanetary Magnetic Field: A Tutorial , 2013 .

[14]  C. Russell,et al.  Comparing Solar Minimum 23/24 with Historical Solar Wind Records at 1 AU , 2011 .

[15]  Ezequiel Echer,et al.  Interplanetary conditions causing intense geomagnetic storms (Dst ≤ −100 nT) during solar cycle 23 (1996–2006) , 2008 .

[16]  R. Schwenn,et al.  Solar Wind Sources and Their Variations Over the Solar Cycle , 2007 .

[17]  Christopher T. Russell,et al.  Properties of Stream Interactions at One AU During 1995 – 2004 , 2006 .

[18]  Y. Kasahara,et al.  Corotating solar wind streams and recurrent geomagnetic activity: A review , 2006 .

[19]  Harald U. Frey,et al.  Coordinated studies of the geospace environment using Cluster, satellite and ground-based data: an interim review , 2005 .

[20]  G. Moon,et al.  SEASONAL AND UNIVERSAL TIME VARIATIONS OF THE AU, AL AND DST INDICES , 2003 .

[21]  W. Gonzalez,et al.  Solar and interplanetary causes of very intense geomagnetic storms , 2001 .

[22]  Ian G. Richardson,et al.  Sources of geomagnetic activity over the solar cycle: Relative importance of coronal mass ejections, high‐speed streams, and slow solar wind , 2000 .

[23]  Robert L. Lysak,et al.  Introduction to Space Physics , 1995 .

[24]  B. Tsurutani,et al.  Interplanetary origin of geomagnetic activity in the declining phase of the solar cycle , 1995 .

[25]  A. Viljanen,et al.  On induction effects at EISCAT and IMAGE magnetometer stations , 1995 .

[26]  H. W. Kroehl,et al.  What is a geomagnetic storm , 1994 .

[27]  J. Gosling Coronal mass ejections: The link between solar and geomagnetic activity* , 1993 .

[28]  G. Parks,et al.  Physics Of Space Plasmas: An Introduction , 1991 .

[29]  B. Tsurutani,et al.  Interplanetary Alfvén waves and auroral (substorm) activity: IMP 8 , 1990 .

[30]  B. Tsurutani,et al.  Solar wind-magnetosphere coupling during intense magnetic storms (1978-1979) , 1989 .

[31]  B. Tsurutani,et al.  Origin of interplanetary southward magnetic fields responsible for major magnetic storms near solar maximum (1978–1979) , 1988 .

[32]  B. Tsurutani,et al.  The cause of high-intensity long-duration continuous AE activity (HILDCAAs): Interplanetary Alfvén wave trains , 1987 .

[33]  Wolfgang Baumjohann,et al.  Estimation of ionospheric electric fields and currents from a regional magnetometer array , 1985 .

[34]  N. R. Sheeley,et al.  A pictorial comparison of interplanetary magnetic field polarity, solar wind speed, and geomagnetic disturbance index during the sunspot cycle , 1977 .

[35]  J. Harvey,et al.  Coronal holes, solar wind streams, and recurrent geomagnetic disturbances: 1973–1976 , 1976 .

[36]  E. Smith,et al.  Observations of interaction regions and corotating shocks between one and five AU - Pioneers 10 and 11. [solar wind streams] , 1976 .

[37]  F. Mozer,et al.  A quantitative model for the potential resulting from reconnection with an arbitrary interplanetary magnetic field , 1974 .

[38]  Masahisa Sugiura,et al.  Auroral electrojet activity index AE and its universal time variations. , 1966 .

[39]  Masahisa Sugiura,et al.  Hourly values of equatorial dst for the igy , 1963 .

[40]  J. Dungey Interplanetary Magnetic Field and the Auroral Zones , 1961 .

[41]  D. Evans,et al.  Evidence for particle injection as the cause of Dst reduction during HILDCAA events , 2004 .

[42]  B. Tsurutani,et al.  Are high-intensity long-duration continuous AE activity (HILDCAA) events substorm expansion events? , 2004 .

[43]  S. Suess,et al.  From the Sun, Auroras, Magnetic Storms, Solar Flares, Cosmic Rays , 1998 .

[44]  P. Mayaud,et al.  Derivation, Meaning, and Use of Geomagnetic Indices , 1980 .