Hyper-Star Graphs: Some Topological Properties and an Optimal Neighbourhood Broadcasting Algorithm

Hyper-star graph HS(2n,n) was introduced to be a competitive model to both hypercubes and star graphs. In this paper, we study its properties by giving a closed form solution to the surface area of HS(2n,n) and discussing its Hamiltonicity by establishing an isomorphism between the graph and the well known middle levels problem. We also develop a single-port optimal neighbourhood broadcasting algorithm for HS(2n,n).

[1]  Eddie Cheng,et al.  On the Surface Areas and Average Distances of Meshes and Tori , 2011, Parallel Process. Lett..

[2]  Sajal K. Das,et al.  Book Review: Introduction to Parallel Algorithms and Architectures : Arrays, Trees, Hypercubes by F. T. Leighton (Morgan Kauffman Pub, 1992) , 1992, SIGA.

[3]  Eddie Cheng,et al.  Embedding hypercubes, rings, and odd graphs into hyper-stars , 2009, Int. J. Comput. Math..

[4]  Eunseuk Oh,et al.  Topological and Communication Aspects of Hyper-Star Graphs , 2003, ISCIS.

[5]  Shahram Latifi,et al.  Distance distribution of nodes in star graphs , 2006, Appl. Math. Lett..

[6]  Sheldon B. Akers,et al.  A Group-Theoretic Model for Symmetric Interconnection Networks , 1989, IEEE Trans. Computers.

[7]  Eddie Cheng,et al.  Topological properties of folded hyper-star networks , 2012, The Journal of Supercomputing.

[8]  Khaled Day,et al.  The Hyperstar Interconnection Network , 1998, J. Parallel Distributed Comput..

[9]  Afonso Ferreira,et al.  Neighborhood Broadcasting in Hypercubes , 2007, SIAM J. Discret. Math..

[10]  Afonso Ferreira,et al.  On the Real Power of Loosely Coupled Parallel Architectures , 1991, Parallel Process. Lett..

[11]  Eddie Cheng,et al.  A note on embeddings among folded hypercubes, even graphs and odd graphs , 2011, Int. J. Comput. Math..

[12]  Eunseuk Oh,et al.  Hyper-Star Graph: A New Interconnection Network Improving the Network Cost of the Hypercube , 2002, EurAsia-ICT.

[13]  S. Lakshmivarahan,et al.  Analysis of the modified even networks , 1991, Proceedings of the Third IEEE Symposium on Parallel and Distributed Processing.

[14]  N. J. A. Sloane,et al.  The On-Line Encyclopedia of Integer Sequences , 2003, Electron. J. Comb..

[15]  Eddie Cheng,et al.  On the surface area of the augmented cubes , 2011, The Journal of Supercomputing.

[16]  Peter Winkler,et al.  Monotone Gray Codes and the Middle Levels Problem , 1995, J. Comb. Theory, Ser. A.

[17]  Sheldon B. Akers,et al.  The Star Graph: An Attractive Alternative to the n-Cube , 1994, ICPP.

[18]  Theresa P. Vaughan,et al.  Whitney Numbers of the Second Kind for the Star Poset , 1990, Eur. J. Comb..

[19]  Selim G. Akl,et al.  Some topological properties of star graphs: The surface area and volume , 2009, Discret. Math..

[20]  Eddie Cheng,et al.  Structural Properties Of Hyper-Stars , 2006, Ars Comb..

[21]  Paul Barry,et al.  On integer-sequence-based constructions of generalized Pascal triangles, J. Integer Sequences , 2006 .

[22]  Satoshi Fujita Optimal Neighborhood Broadcast in Star Graphs , 2003, J. Interconnect. Networks.

[23]  Jou-Ming Chang,et al.  Independent spanning trees on folded hyper‐stars , 2010, Networks.

[24]  S. Lennart Johnsson,et al.  Optimum Broadcasting and Personalized Communication in Hypercubes , 1989, IEEE Trans. Computers.

[25]  Carla D. Savage,et al.  An update on the middle levels problem , 2009, Discret. Math..

[26]  F. Leighton,et al.  Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes , 1991 .

[27]  Eddie Cheng,et al.  One-to-many node-disjoint paths of hyper-star networks , 2012, Discret. Appl. Math..

[28]  Michael Sampels,et al.  Vertex-symmetric generalized Moore graphs , 2004, Discret. Appl. Math..

[29]  Ke Qiu On a Unified Neighbourhood Broadcasting Scheme for Interconnection Networks , 2007, Parallel Process. Lett..