Weighted Context-Free Grammars Over Bimonoids

We introduce and investigate weighted context-free grammars over an arbitrary bimonoid K. Thus, we do not assume that the operations of K are commutative or idempotent or they distribute over each other. We prove a Chomsky-Schützenberger type theorem for the series generated by our grammars. Moreover, we show that the class of series generated by weighted right-linear grammars over a linearly ordered alphabet Σ and K coincides with that of recognizable series over Σ and K.

[1]  Tevfik Bultan,et al.  Interface Grammars for Modular Software Model Checking , 2007, IEEE Transactions on Software Engineering.

[2]  Mahesh Viswanathan,et al.  Parikh ’ s Theorem for Weighted and Probabilistic Context-Free Grammars , 2017 .

[3]  M. Droste,et al.  Handbook of Weighted Automata , 2009 .

[4]  Arto Salomaa,et al.  Semirings, Automata, Languages , 1985, EATCS Monographs on Theoretical Computer Science.

[5]  Dexter Kozen,et al.  Automata and Computability , 1997, Undergraduate Texts in Computer Science.

[6]  Jean Berstel,et al.  Context-Free Languages and Pushdown Automata , 1997, Handbook of Formal Languages.

[7]  Manfred Droste,et al.  Determinization of weighted finite automata over strong bimonoids , 2010, Inf. Sci..

[8]  Ping Li,et al.  The realization problems related to weighted transducers over strong bimonoids , 2014, 2014 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE).

[9]  Manfred Droste,et al.  Weighted finite automata over strong bimonoids , 2010, Inf. Sci..

[10]  Jacques Sakarovitch,et al.  Elements of Automata Theory , 2009 .

[11]  Somesh Jha,et al.  Verifying parameterized networks , 1997, TOPL.

[13]  Manfred Droste,et al.  MK-fuzzy Automata and MSO Logics , 2017, GandALF.

[14]  Noah A. Smith,et al.  Weighted and Probabilistic Context-Free Grammars Are Equally Expressive , 2007, CL.

[15]  Manfred Droste,et al.  The Chomsky-SCHüTzenberger Theorem for Quantitative Context-Free Languages , 2012, Int. J. Found. Comput. Sci..

[16]  S. C. Kleene,et al.  Introduction to Metamathematics , 1952 .

[17]  Samuel Eilenberg,et al.  Automata, languages, and machines. A , 1974, Pure and applied mathematics.

[18]  Grigore Rosu,et al.  Efficient monitoring of parametric context-free patterns , 2008, 2008 23rd IEEE/ACM International Conference on Automated Software Engineering.

[19]  Somesh Jha,et al.  Veryfying Parameterized Networks using Abstraction and Regular Languages , 1995, CONCUR.

[20]  Thomas Hanneforth A Practical Algorithm for Intersecting Weighted Context-free Grammars with Finite-State Automata , 2011, FSMNLP.

[21]  Marcello M. Bonsangue,et al.  Defining Context-Free Power Series Coalgebraically , 2012, CMCS.