MIRank-KNN: multiple-instance retrieval of clinically relevant diabetic retinopathy images

Abstract. Diabetic retinopathy (DR) is a consequence of diabetes and is the leading cause of blindness among 18- to 65-year-old adults. Regular screening is critical to early detection and treatment of DR. Computer-aided diagnosis has the potential of improving the practice in DR screening or diagnosis. An automated and unsupervised approach for retrieving clinically relevant images from a set of previously diagnosed fundus camera images for improving the efficiency of screening and diagnosis of DR is presented. Considering that DR lesions are often localized, we propose a multiclass multiple-instance framework for the retrieval task. Considering the special visual properties of DR images, we develop a feature space of a modified color correlogram appended with statistics of steerable Gaussian filter responses selected by fast radial symmetric transform points. Experiments with real DR images collected from five different datasets demonstrate that the proposed approach is able to outperform existing methods.

[1]  Jayanthi Sivaswamy,et al.  Content-based retrieval of retinal images for maculopathy , 2010, IHI.

[2]  P. Locher,et al.  SYMMETRY CATCHES THE EYE , 1987 .

[3]  Gwénolé Quellec,et al.  A multiple-instance learning framework for diabetic retinopathy screening , 2012, Medical Image Anal..

[4]  Christos Faloutsos,et al.  Fast and Effective Retrieval of Medical Tumor Shapes , 1998, IEEE Trans. Knowl. Data Eng..

[5]  Jacques Wainer,et al.  Points of Interest and Visual Dictionaries for Automatic Retinal Lesion Detection , 2012, IEEE Transactions on Biomedical Engineering.

[6]  Michael H. Goldbaum,et al.  Content-based retrieval of ophthalmological images , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[7]  C. Roux,et al.  Content Based Image Retrieval based on Wavelet Transform coefficients distribution , 2007, 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[8]  L. Kaufman,et al.  “Center-of-gravity” Tendencies for fixations and flow patterns , 1969 .

[9]  B. S. Manjunath,et al.  Texture Features for Browsing and Retrieval of Image Data , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  Ricky K. Taira,et al.  A semantic modeling approach for image retrieval by content , 1994, The VLDB Journal.

[11]  Don R. Hush,et al.  Query by image example: The CANDID approach , 1995 .

[12]  J. Shaw,et al.  Global estimates of diabetes prevalence for 2013 and projections for 2035. , 2014, Diabetes Research and Clinical Practice.

[13]  Baoxin Li,et al.  Retrieving clinically relevant diabetic retinopathy images using a multi-class multiple-instance framework , 2013, Medical Imaging.

[14]  Thomas G. Dietterich,et al.  Solving the Multiple Instance Problem with Axis-Parallel Rectangles , 1997, Artif. Intell..

[15]  Andrea Vedaldi,et al.  Vlfeat: an open and portable library of computer vision algorithms , 2010, ACM Multimedia.

[16]  Baoxin Li,et al.  Classification of diabetic retinopathy images using multi-class multiple-instance learning based on color correlogram features , 2012, 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[17]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[18]  Hermann Ney,et al.  Features for image retrieval: an experimental comparison , 2008, Information Retrieval.

[19]  Joost van de Weijer,et al.  Boosting color saliency in image feature detection , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Guy Cazuguel,et al.  FEEDBACK ON A PUBLICLY DISTRIBUTED IMAGE DATABASE: THE MESSIDOR DATABASE , 2014 .

[21]  Heikki Mannila,et al.  Finding low-entropy sets and trees from binary data , 2007, KDD '07.

[22]  Baoxin Li,et al.  Automated Analysis of Diabetic Retinopathy Images: Principles, Recent Developments, and Emerging Trends , 2013, Current Diabetes Reports.

[23]  Koen E. A. van de Sande,et al.  Evaluating Color Descriptors for Object and Scene Recognition , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Fahad Shahbaz Khan,et al.  Color attributes for object detection , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[25]  Tom Drummond,et al.  Machine Learning for High-Speed Corner Detection , 2006, ECCV.

[26]  Xiaoying Tai,et al.  Medical Image Retrieval Based on Semantic of Neighborhood Color Moment Histogram , 2008, 2008 2nd International Conference on Bioinformatics and Biomedical Engineering.

[27]  Mingjing Li Texture Moment for Content-Based Image Retrieval , 2007, 2007 IEEE International Conference on Multimedia and Expo.

[28]  S. Garg,et al.  Diabetic Retinopathy Screening Update , 2009, Clinical Diabetes.

[29]  Min Chen,et al.  A Multiple Instance Learning Approach for Content Based Image Retrieval Using One-Class Support Vector Machine , 2005, 2005 IEEE International Conference on Multimedia and Expo.

[30]  Tao Qin,et al.  LETOR: Benchmark Dataset for Research on Learning to Rank for Information Retrieval , 2007 .

[31]  Gwénolé Quellec,et al.  Wavelet optimization for content-based image retrieval in medical databases , 2010, Medical Image Anal..

[32]  Edward H. Adelson,et al.  The Design and Use of Steerable Filters , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Tom Drummond,et al.  Fusing points and lines for high performance tracking , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[34]  Rubens Belfort,et al.  Visual impairment and blindness: an overview of prevalence and causes in Brazil. , 2009, Anais da Academia Brasileira de Ciencias.

[35]  Gwénolé Quellec,et al.  Fast Wavelet-Based Image Characterization for Highly Adaptive Image Retrieval , 2012, IEEE Transactions on Image Processing.

[36]  Qi Tian,et al.  Packing and Padding: Coupled Multi-index for Accurate Image Retrieval , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[37]  E. Chaum,et al.  AUTOMATED DIAGNOSIS OF RETINOPATHY BY CONTENT-BASED IMAGE RETRIEVAL , 2008, Retina.

[38]  Ann L. Albright,et al.  Prevalence of diabetic retinopathy in the United States, 2005-2008. , 2010, JAMA.

[39]  Roelof van Zwol,et al.  Flickr tag recommendation based on collective knowledge , 2008, WWW.

[40]  Anil K. Bera,et al.  Maximum entropy autoregressive conditional heteroskedasticity model , 2009 .

[41]  G. Quellec,et al.  Automated assessment of diabetic retinopathy severity using content-based image retrieval in multimodal fundus photographs. , 2011, Investigative ophthalmology & visual science.

[42]  Jing Huang,et al.  Image indexing using color correlograms , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[43]  Joost van de Weijer,et al.  Author Manuscript, Published in "ieee Transactions on Image Processing Edge-based Color Constancy , 2022 .

[44]  Qi Zhang,et al.  Content-Based Image Retrieval Using Multiple-Instance Learning , 2002, ICML.

[45]  Alexander Zelinsky,et al.  Fast Radial Symmetry for Detecting Points of Interest , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[46]  Hui Zhang,et al.  Localized Content-Based Image Retrieval , 2008, IEEE Trans. Pattern Anal. Mach. Intell..

[47]  Heikki Kälviäinen,et al.  DIARETDB 0 : Evaluation Database and Methodology for Diabetic Retinopathy Algorithms , 2007 .

[48]  Baoxin Li,et al.  Automatic classification and detection of clinically relevant images for diabetic retinopathy , 2008, SPIE Medical Imaging.

[49]  Bram van Ginneken,et al.  Active Learning for an Efficient Training Strategy of Computer-Aided Diagnosis Systems: Application to Diabetic Retinopathy Screening , 2010, MICCAI.

[50]  L. Kaufman,et al.  Spontaneous fixation tendencies for visual forms , 1969 .

[51]  Joni-Kristian Kämäräinen,et al.  The DIARETDB1 Diabetic Retinopathy Database and Evaluation Protocol , 2007, BMVC.

[52]  Jacques Wainer,et al.  Assessing the Need for Referral in Automatic Diabetic Retinopathy Detection , 2013, IEEE Transactions on Biomedical Engineering.

[53]  Peter F. Sharp,et al.  Evaluation of a System for Automatic Detection of Diabetic Retinopathy From Color Fundus Photographs in a Large Population of Patients With Diabetes , 2008, Diabetes Care.

[54]  Michael H. Goldbaum,et al.  Image Understanding for Automated Retinal Diagnosis. , 1989 .

[55]  Thomas Hofmann,et al.  Support Vector Machines for Multiple-Instance Learning , 2002, NIPS.

[56]  Jun Wang,et al.  Solving the Multiple-Instance Problem: A Lazy Learning Approach , 2000, ICML.

[57]  Ricardo da Silva Torres,et al.  Learning to rank for content-based image retrieval , 2010, MIR '10.

[58]  Tomás Lozano-Pérez,et al.  Image database retrieval with multiple-instance learning techniques , 2000, Proceedings of 16th International Conference on Data Engineering (Cat. No.00CB37073).

[59]  Chang-Tien Lu,et al.  An entropy-based method for assessing the number of spatial outliers , 2008, 2008 IEEE International Conference on Information Reuse and Integration.

[60]  Qi Zhang,et al.  EM-DD: An Improved Multiple-Instance Learning Technique , 2001, NIPS.

[61]  David Dagan Feng,et al.  Content-based retrieval of dynamic PET functional images , 2000, IEEE Transactions on Information Technology in Biomedicine.