Probabilistic Multileave Gradient Descent
暂无分享,去创建一个
[1] Filip Radlinski,et al. Large-scale validation and analysis of interleaved search evaluation , 2012, TOIS.
[2] M. de Rijke,et al. Multileave Gradient Descent for Fast Online Learning to Rank , 2016, WSDM.
[3] Filip Radlinski,et al. Detecting duplicate web documents using clickthrough data , 2011, WSDM '11.
[4] M. de Rijke,et al. Probabilistic Multileave for Online Retrieval Evaluation , 2015, SIGIR.
[5] Katja Hofmann,et al. Reusing historical interaction data for faster online learning to rank for IR , 2013, DIR.
[6] Thorsten Joachims,et al. Interactively optimizing information retrieval systems as a dueling bandits problem , 2009, ICML '09.
[7] Filip Radlinski,et al. How does clickthrough data reflect retrieval quality? , 2008, CIKM '08.
[8] Filip Radlinski,et al. Optimized interleaving for online retrieval evaluation , 2013, WSDM.
[9] Katja Hofmann,et al. A probabilistic method for inferring preferences from clicks , 2011, CIKM '11.
[10] Thorsten Joachims,et al. Evaluating Retrieval Performance Using Clickthrough Data , 2003, Text Mining.
[11] Mark Sanderson,et al. Test Collection Based Evaluation of Information Retrieval Systems , 2010, Found. Trends Inf. Retr..
[12] Tao Qin,et al. LETOR: Benchmark Dataset for Research on Learning to Rank for Information Retrieval , 2007 .
[13] M. de Rijke,et al. Multileaved Comparisons for Fast Online Evaluation , 2014, CIKM.
[14] Chao Liu,et al. Efficient multiple-click models in web search , 2009, WSDM '09.
[15] Katja Hofmann,et al. Information Retrieval manuscript No. (will be inserted by the editor) Balancing Exploration and Exploitation in Listwise and Pairwise Online Learning to Rank for Information Retrieval , 2022 .
[16] Thorsten Joachims,et al. Optimizing search engines using clickthrough data , 2002, KDD.