Convergence and regularization for monotonicity-based shape reconstruction in electrical impedance tomography

The inverse problem of electrical impedance tomography is severely ill-posed, meaning that, only limited information about the conductivity can in practice be recovered from boundary measurements of electric current and voltage. Recently it was shown that a simple monotonicity property of the related Neumann-to-Dirichlet map can be used to characterize shapes of inhomogeneities in a known background conductivity. In this paper we formulate a monotonicity-based shape reconstruction scheme that applies to approximative measurement models, and regularizes against noise and modelling error. We demonstrate that for admissible choices of regularization parameters the inhomogeneities are detected, and under reasonable assumptions, asymptotically exactly characterized. Moreover, we rigorously associate this result with the complete electrode model, and describe how a computationally cheap monotonicity-based reconstruction algorithm can be implemented. Numerical reconstructions from both simulated and real-life measurement data are presented.

[1]  Eric T. Chung,et al.  Electrical impedance tomography using level set representation and total variational regularization , 2005 .

[2]  Nuutti Hyvönen,et al.  Approximating idealized boundary data of electric impedance tomography by electrode measurements , 2009 .

[3]  Nuutti Hyvönen,et al.  Complete Electrode Model of Electrical Impedance Tomography: Approximation Properties and Characterization of Inclusions , 2004, SIAM J. Appl. Math..

[4]  Bastian von Harrach,et al.  Monotonicity-Based Shape Reconstruction in Electrical Impedance Tomography , 2013, SIAM J. Math. Anal..

[5]  A. Calderón,et al.  On an inverse boundary value problem , 2006 .

[6]  Bastian von Harrach,et al.  Resolution Guarantees in Electrical Impedance Tomography , 2015, IEEE Transactions on Medical Imaging.

[7]  Bastian von Harrach,et al.  Recent Progress on the Factorization Method for Electrical Impedance Tomography , 2013, Comput. Math. Methods Medicine.

[8]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[9]  Kari Astala,et al.  Calderon's inverse conductivity problem in the plane , 2006 .

[10]  M. IKEHATA How to draw a picture of an unknown inclusion from boundary measurements. Two mathematical inversion algorithms , 1999 .

[11]  NUUTTI HYVÖNEN,et al.  Optimizing Electrode Positions in Electrical Impedance Tomography , 2014, SIAM J. Appl. Math..

[12]  MATTI LASSAS,et al.  Calderóns' Inverse Problem for Anisotropic Conductivity in the Plane , 2004 .

[13]  Nuutti Hyvönen,et al.  Fr[e-acute]chet Derivative with Respect to the Shape of an Internal Electrode in Electrical Impedance Tomography , 2010, SIAM J. Appl. Math..

[14]  Gunther Uhlmann,et al.  Electrical impedance tomography and Calderón's problem , 2009 .

[15]  J. Sylvester,et al.  A global uniqueness theorem for an inverse boundary value problem , 1987 .

[16]  S. Resnick A Probability Path , 1999 .

[17]  A. Nachman,et al.  Global uniqueness for a two-dimensional inverse boundary value problem , 1996 .

[18]  M. Hanke,et al.  Numerical implementation of two noniterative methods for locating inclusions by impedance tomography , 2000 .

[19]  Jin Keun Seo,et al.  Exact Shape-Reconstruction by One-Step Linearization in Electrical Impedance Tomography , 2010, SIAM J. Math. Anal..

[20]  Bastian Harrach,et al.  Interpolation of missing electrode data in electrical impedance tomography , 2015, 1810.04390.

[21]  N. Holmer,et al.  Electrical Impedance Tomography , 1991 .

[22]  Antonello Tamburrino,et al.  A new non-iterative inversion method for electrical resistance tomography , 2002 .

[23]  Jin Keun Seo,et al.  Detecting Inclusions in Electrical Impedance Tomography Without Reference Measurements , 2009, SIAM J. Appl. Math..

[24]  Harri Hakula,et al.  The Factorization Method Applied to the Complete Electrode Model of Impedance Tomography , 2008, SIAM J. Appl. Math..

[25]  Marko Vauhkonen,et al.  Simultaneous reconstruction of electrode contact impedances and internal electrical properties: II. Laboratory experiments , 2002 .

[26]  Kristian Kirsch,et al.  Methods Of Modern Mathematical Physics , 2016 .

[27]  Masaru Ikehata,et al.  Reconstruction of the support function for inclusion from boundary measurements , 2000 .

[28]  Armin Lechleiter,et al.  Newton regularizations for impedance tomography: convergence by local injectivity , 2008 .

[29]  Bastian Gebauer,et al.  Localized potentials in electrical impedance tomography , 2008 .

[30]  D. Isaacson,et al.  Electrode models for electric current computed tomography , 1989, IEEE Transactions on Biomedical Engineering.

[31]  Tosio Kato Perturbation theory for linear operators , 1966 .

[32]  Martin Hanke,et al.  Recent progress in electrical impedance tomography , 2003 .

[33]  David Isaacson,et al.  NOSER: An algorithm for solving the inverse conductivity problem , 1990, Int. J. Imaging Syst. Technol..

[34]  Antonello Tamburrino Monotonicity based imaging methods for elliptic and parabolic inverse problems , 2006 .

[35]  E. Somersalo,et al.  Statistical inversion and Monte Carlo sampling methods in electrical impedance tomography , 2000 .

[36]  Armin Lechleiter,et al.  A regularization technique for the factorization method , 2006 .

[37]  Martin Brühl,et al.  Explicit Characterization of Inclusions in Electrical Impedance Tomography , 2001, SIAM J. Math. Anal..

[38]  M. Bebendorf A Note on the Poincaré Inequality for Convex Domains , 2003 .

[39]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[40]  B. Harrach,et al.  Combining frequency-difference and ultrasound modulated electrical impedance tomography , 2015, 1810.04392.

[41]  Jari P. Kaipio,et al.  Tikhonov regularization and prior information in electrical impedance tomography , 1998, IEEE Transactions on Medical Imaging.

[42]  E. Somersalo,et al.  Existence and uniqueness for electrode models for electric current computed tomography , 1992 .

[43]  Elliott H. Lieb,et al.  Poincare Inequalities in Punctured Domains , 2002, math/0205088.