Application of Randomization Techniques to Space-Time Convolutional Codes

This correspondence introduces a new approach to design space-time convolutional codes (STCCs) with large constellation size in systems with any number of transmit antennas. Our design procedure is based on utilizing quadrature phase-shift keying (QPSK) STCCs as component codes, and, consequently, unlike existing techniques, the search space does not grow exponentially with the constellation size. Our approach is further based on the fact that an ntimesm multiple-input multiple-output (MIMO) system is equivalent to n distinct 1timesm systems. By employing a common design for each individual 1timesm system, we arrive at an approach whose complexity does not grow with the number of transmit antennas. To describe our approach, we first demonstrate that a system employing an STCC can be implemented with only a single transmit antenna when there are multiple receive antennas. The idea is to transmit more than one symbol from a single transmit antenna during a symbol period by superimposing the encoded symbols on top of each other. This objective is achieved by inducing randomness into the system, that creates additional channel paths, called virtual paths. The design of the distributions of the induced random variables is studied for slow Rayleigh and Rician fading channels by utilizing an upper bound on the pairwise block error probability. Simulation results evaluate the performance of this technique for the case of two transmit antennas and several different number of receive antennas, a spectral efficiency of 4 b/s/Hz for slow Rayleigh and Rician fading channels

[1]  Raymond Knopp,et al.  Information capacity and power control in single-cell multiuser communications , 1995, Proceedings IEEE International Conference on Communications ICC '95.

[2]  Hesham El Gamal,et al.  On the robustness of space-time coding , 2002, IEEE Trans. Signal Process..

[3]  M. P. Fitz,et al.  Design and analysis of transmitter diversity using intentional frequency offset for wireless communications , 1997 .

[4]  M. J. Gans,et al.  On Limits of Wireless Communications in a Fading Environment when Using Multiple Antennas , 1998, Wirel. Pers. Commun..

[5]  Reinaldo A. Valenzuela,et al.  Simplified processing for high spectral efficiency wireless communication employing multi-element arrays , 1999, IEEE J. Sel. Areas Commun..

[6]  Rick S. Blum,et al.  Improved space-time convolutional codes for quasi-static slow fading channels , 2002, IEEE Trans. Wirel. Commun..

[7]  Branka Vucetic,et al.  Performance and design of space-time coding in fading channels , 2003, IEEE Trans. Commun..

[8]  A. Hottinen,et al.  A randomization technique for non-orthogonal space-time block codes , 2001, IEEE VTS 53rd Vehicular Technology Conference, Spring 2001. Proceedings (Cat. No.01CH37202).

[9]  Emre Telatar,et al.  Capacity of Multi-antenna Gaussian Channels , 1999, Eur. Trans. Telecommun..

[10]  David Tse,et al.  Opportunistic beamforming using dumb antennas , 2002, IEEE Trans. Inf. Theory.

[11]  A. Robert Calderbank,et al.  Space-Time Codes for High Data Rate Wireless Communications : Performance criterion and Code Construction , 1998, IEEE Trans. Inf. Theory.

[12]  Zhuo Chen,et al.  An improved space-time trellis coded modulation scheme on slow Rayleigh fading channels , 2001, ICC 2001. IEEE International Conference on Communications. Conference Record (Cat. No.01CH37240).

[13]  Reinaldo A. Valenzuela,et al.  Detection algorithm and initial laboratory results using V-BLAST space-time communication architecture , 1999 .

[14]  Fumiyuki Adachi,et al.  Combined effects of phase sweeping transmitter diversity and channel coding , 1992 .