Inverse Modeling of the Ocean and Atmosphere

Preamble 1. Variational assimilation 2. Interpretation 3. Implementation 4. The varieties of linear and nonlinear estimation 5. The ocean and the atmosphere 6. Ill-posed forecasting problems References Appendix A. Computing exercises Appendix B. Euler-Lagrange equations for a numerical weather prediction model Index.

[1]  Clive D Rodgers,et al.  Inverse Methods for Atmospheric Sounding: Theory and Practice , 2000 .

[2]  D. Carati,et al.  Large-eddy simulation , 2000 .

[3]  Keith Haines,et al.  Data assimilation in ocean models , 1996 .

[4]  R. Carey Atmospheric Science: An Introductory Survey , 1978 .

[5]  Rohit Chandra,et al.  Parallel programming in openMP , 2000 .

[6]  P. Malanotte‐Rizzoli,et al.  An approximate Kaiman filter for ocean data assimilation: An example with an idealized Gulf Stream model , 1995 .

[7]  W. Kessler,et al.  The Annual Wind-driven Rossby Wave in the Subthermocline Equatorial Pacific , 1993 .

[8]  Andrew F. Bennett,et al.  Open Boundary Conditions for Lagrangian Geophysical Fluid Dynamics , 1999 .

[9]  K. Bryan,et al.  A Numerical Model of the Ventilated Thermocline , 1984 .

[10]  A. Bennett Inverse methods for assessing ship-of-opportunity networks and estimating circulation and winds from tropical expendable bathythermograph data , 1990 .

[11]  Antonio J. Busalacchi,et al.  Sea surface topography fields of the tropical Pacific , 1995 .

[12]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[13]  J. Goerss,et al.  The Multivariate Optimum Interpolation Analysis of Meteorological Data at the Fleet Numerical Oceanography Center , 1993 .

[14]  Andrew F. Bennett,et al.  A Parallel Algorithm for Variational Assimilation in Oceanography and Meteorology , 1992 .

[15]  Michael J. McPhaden,et al.  TOGA-TAO and the 1991–93 El Niño Southern Oscillation Event , 1993 .

[16]  Thomas M. Smith,et al.  A High-Resolution Global Sea Surface Temperature Climatology , 1995 .

[17]  Robert N. Miller,et al.  Weighting Initial Conditions in Variational Assimilation Schemes , 1991 .

[18]  Christian L. Keppenne,et al.  Data Assimilation into a Primitive-Equation Model with a Parallel Ensemble Kalman Filter , 2000 .

[19]  J. Hadamard,et al.  Lectures on Cauchy's Problem in Linear Partial Differential Equations , 1924 .

[20]  Peter S. Pacheco Parallel programming with MPI , 1996 .

[21]  Y. Sasaki SOME BASIC FORMALISMS IN NUMERICAL VARIATIONAL ANALYSIS , 1970 .

[22]  O. B. Andersen,et al.  Intercomparison of recent ocean tide models , 1995 .

[23]  P. Courtier,et al.  Important literature on the use of adjoint, variational methods and the Kalman filter in meteorology , 1993 .

[24]  Gary D. Egbert,et al.  Estimates of M2 Tidal Energy Dissipation from TOPEX/Poseidon Altimeter Data , 2001 .

[25]  F. L. Dimet,et al.  Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects , 1986 .

[26]  J. E. Glynn,et al.  Numerical Recipes: The Art of Scientific Computing , 1989 .

[27]  J. M. Lewis,et al.  The use of adjoint equations to solve a variational adjustment problem with advective constraints , 1985 .

[28]  Boon S. Chua,et al.  Open-ocean modeling as an inverse problem: the primitive equations , 1994 .

[29]  J. L. Roux An Introduction to the Kalman Filter , 2003 .

[30]  H. Weinert Reproducing kernel Hilbert spaces: Applications in statistical signal processing , 1982 .

[31]  Wilfredo Palma,et al.  Estimation of Tropical Sea Level Anomaly by an Improved Kalman Filter , 1996 .

[32]  Arlindo da Silva,et al.  Data assimilation in the presence of forecast bias , 1998 .

[33]  L. Leslie,et al.  Generalized inversion of a global numerical weather prediction model , 1996 .

[34]  C. Wunsch The Ocean Circulation Inverse Problem , 1996 .

[35]  Michael J. McPhaden,et al.  El Niño: The child prodigy of 1997-98 , 1999, Nature.

[36]  J. Mahfouf,et al.  The ecmwf operational implementation of four‐dimensional variational assimilation. III: Experimental results and diagnostics with operational configuration , 2000 .

[37]  Thomas Kaminski,et al.  Recipes for adjoint code construction , 1998, TOMS.

[38]  L. Amodei,et al.  Solution approchée pour un problème d'assimilation de données météorologiques avec prise en compte de l'erreur de modèle , 1995 .

[39]  R. H. Fowler The Mathematical Theory of Non-Uniform Gases , 1939, Nature.

[40]  I. Stakgold Green's Functions and Boundary Value Problems , 1979 .

[41]  R. Errico What is an adjoint model , 1997 .

[42]  Philippe Courtier,et al.  Unified Notation for Data Assimilation : Operational, Sequential and Variational , 1997 .

[43]  M. E. Parke,et al.  Accuracy assessment of recent ocean tide models , 1997 .

[44]  R. Pacanowski,et al.  Parameterization of Vertical Mixing in Numerical Models of Tropical Oceans , 1981 .

[45]  P. Bogden,et al.  The impact of model-error correlation on regional data assimilative models and their observational arrays , 2001 .

[46]  G. D. Egbert,et al.  Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data , 2000, Nature.

[47]  A. Bennett Inverse Methods in Physical Oceanography , 1992 .

[48]  R. Daley,et al.  Towards a true 4-dimensional data assimilation algorithm: application of a cycling representer algorithm to a simple transport problem , 2000 .

[49]  A. Bennett,et al.  Open Ocean Modeling as an Inverse Problem: M2 Tides in Bass Strait , 1984 .

[50]  Carl Wunsch,et al.  Oceanographic Experiment Design by Simulated Annealing , 1990 .

[51]  O. Talagrand,et al.  Adaptive filtering: application to satellite data assimilation in oceanography , 1998 .

[52]  G. Egbert Tidal data inversion: interpolation and inference , 1997 .

[53]  Edward D. Zaron,et al.  Data Assimilation in Models with Convective Adjustment , 1994 .

[54]  R. Parker Geophysical Inverse Theory , 1994 .

[55]  J. Lions Optimal Control of Systems Governed by Partial Differential Equations , 1971 .

[56]  Russell L. Elsberry,et al.  International experiments to study tropical cyclones in the Western North Pacific , 1990 .

[57]  T. Hogan,et al.  The Description of the Navy Operational Global Atmospheric Prediction System's Spectral Forecast Model , 1991 .

[58]  G. Holland An Analytic Model of the Wind and Pressure Profiles in Hurricanes , 1980 .

[59]  Lance M. Leslie,et al.  Tropical Cyclone Prediction Using a Barotropic Model Initialized by a Generalized Inverse Method , 1993 .

[60]  A. Arakawa,et al.  Numerical methods used in atmospheric models , 1976 .

[61]  Neville Smith,et al.  Assimilation of Subsurface Thermal Data into a Simple Ocean Model for the Initialization of an Intermediate Tropical Coupled Ocean-Atmosphere Forecast Model , 1995 .

[62]  S. Cohn,et al.  An Introduction to Estimation Theory , 1997 .

[63]  J. Kruger Simulated Annealing: A Tool for Data Assimilation into an Almost Steady Model State , 1993 .

[64]  N. B. Ingleby,et al.  The Met. Office global three‐dimensional variational data assimilation scheme , 2000 .

[65]  Masafumi Kamachi,et al.  Time-space weak-constraint data assimilation for nonlinear models , 2000 .

[66]  G. Batchelor,et al.  An Introduction to Fluid Dynamics , 1968 .

[67]  C. Provost,et al.  Ocean Tides for and from TOPEX/POSEIDON , 1995, Science.

[68]  A. E. Gill Atmosphere-Ocean Dynamics , 1982 .

[69]  Florent Lyard,et al.  Energetics of the M2 barotropic ocean tides: an estimate of bottom friction dissipation from a hydrodynamic model , 1997 .

[70]  A.H. Haddad,et al.  Applied optimal estimation , 1976, Proceedings of the IEEE.

[71]  R. Hodur The Naval Research Laboratory’s Coupled Ocean/Atmosphere Mesoscale Prediction System (COAMPS) , 1997 .

[72]  P. Kloeden,et al.  The quasi‐geostrophic equations: Approximation, predictability and equilibrium spectra of solutions , 1981 .

[73]  G. Wahba,et al.  Some New Mathematical Methods for Variational Objective Analysis Using Splines and Cross Validation , 1980 .

[74]  D. McLaughlin,et al.  Hydrologic Data Assimilation with the Ensemble Kalman Filter , 2002 .

[75]  Peter R. Gent,et al.  A reduced gravity, primitive equation model of the upper equatorial ocean , 1989 .

[76]  R. A. Silverman,et al.  The Mathematical Theory of Viscous Incompressible Flow , 1972 .

[77]  A. Bennett,et al.  Data assimilation methods for ocean tides , 1996 .

[78]  Ernst J. O. Schrama,et al.  A preliminary tidal analysis of TOPEX/POSEIDON altimetry , 1994 .

[79]  Ionel M. Navon,et al.  Use of differentiable and nondifferentiable optimization algorithms for variational data assimilation with discontinuous cost functions , 2000 .

[80]  A. Bennett,et al.  Array design by inverse methods , 1985 .

[81]  Jacques Verron,et al.  Sensitivity Analysis in Variational Data Assimilation , 1997 .

[82]  John Derber,et al.  A Convolution Algorithm with Application to Data Assimilation , 1996, SIAM J. Sci. Comput..

[83]  Xundong Qin,et al.  Generalized Adjoint for Physical Processes with Parameterized Discontinuities . Part VI : Minimization Problems in Multidimensional Space , 1999 .

[84]  P. Kumar,et al.  Theory and practice of recursive identification , 1985, IEEE Transactions on Automatic Control.

[85]  A. Bennett,et al.  The generalized inverse of a nonlinear quasigeostrophic ocean circulation model , 1992 .

[86]  R. Daley Atmospheric Data Analysis , 1991 .

[87]  G. Evensen,et al.  Parameter estimation solving a weak constraint variational formulation for an Ekman model , 1997 .

[88]  W. Kessler Observations of long Rossby waves in the northern tropical Pacific , 1990 .

[89]  Andrew F. Bennett,et al.  An inverse ocean modeling system , 2001 .

[90]  J. Dutz Repression of fecundity in the neritic copepod Acartia clausi exposed to the toxic dinoflagellate Alexandrium lusitanicum: relationship between feeding and egg production , 1998 .

[91]  W. Paul Menzel,et al.  The Impact of Satellite-derived Winds on Numerical Hurricane Track Forecasting , 1992 .

[92]  D. E. Harrison,et al.  Scales of Variability in the Equatorial Pacific Inferred form Tropical Atmosphere-Ocean Buoy Array , 1996 .

[93]  A. Piacentini,et al.  A new representation of data‐assimilation methods: The PALM flow‐charting approach , 2001 .

[94]  Pierre F. J. Lermusiaux,et al.  Data Assimilation In Models , 2001 .

[95]  L. Leslie,et al.  Generalized inversion of a global numerical weather prediction model, II: Analysis and implementation , 1997 .