Automated Diagnosis of epilepsy using CWT, HOS and Texture parameters

Epilepsy is a chronic brain disorder which manifests as recurrent seizures. Electroencephalogram (EEG) signals are generally analyzed to study the characteristics of epileptic seizures. In this work, we propose a method for the automated classification of EEG signals into normal, interictal and ictal classes using Continuous Wavelet Transform (CWT), Higher Order Spectra (HOS) and textures. First the CWT plot was obtained for the EEG signals and then the HOS and texture features were extracted from these plots. Then the statistically significant features were fed to four classifiers namely Decision Tree (DT), K-Nearest Neighbor (KNN), Probabilistic Neural Network (PNN) and Support Vector Machine (SVM) to select the best classifier. We observed that the SVM classifier with Radial Basis Function (RBF) kernel function yielded the best results with an average accuracy of 96%, average sensitivity of 96.9% and average specificity of 97% for 23.6 s duration of EEG data. Our proposed technique can be used as an automatic seizure monitoring software. It can also assist the doctors to cross check the efficacy of their prescribed drugs.

[1]  H. Adeli,et al.  Automated EEG-Based Diagnosis of Neurological Disorders: Inventing the Future of Neurology , 2010 .

[2]  Sankaran Mahadevan,et al.  Bayesian wavelet packet denoising for structural system identification , 2007 .

[3]  Hojjat Adeli,et al.  Dynamic fuzzy wavelet neuroemulator for non‐linear control of irregular building structures , 2008 .

[4]  Hojjat Adeli,et al.  Dynamic Wavelet Neural Network Model for Traffic Flow Forecasting , 2005 .

[5]  U. Acharya,et al.  Automated Diagnosis of Oral Cancer Using Higher Order Spectra Features and Local Binary Pattern: A Comparative Study , 2011, Technology in cancer research & treatment.

[6]  Milos Borenovic,et al.  Space Partitioning Strategies for Indoor WLAN Positioning with Cascade-Connected ANN Structures , 2011, Int. J. Neural Syst..

[7]  Simon Haykin,et al.  Neural Networks and Learning Machines , 2010 .

[8]  Vinod Chandran,et al.  Pattern Recognition Using Invariants Defined From Higher Order Spectra- One Dimensional Inputs , 1993, IEEE Trans. Signal Process..

[9]  Hojjat Adeli,et al.  Comparison of fuzzy-wavelet radial basis function neural network freeway incident detection model with California algorithm , 2002 .

[10]  Kenneth I. Laws,et al.  Rapid Texture Identification , 1980, Optics & Photonics.

[11]  U. Rajendra Acharya,et al.  Erratum to "Entropies for detection of epilepsy in EEG" [Comput. Methods Prog. Biomed. 80 (2005) 187-194] , 2006, Comput. Methods Programs Biomed..

[12]  U. Rajendra Acharya,et al.  Entropies for detection of epilepsy in EEG , 2005, Comput. Methods Programs Biomed..

[13]  H. Adeli,et al.  A spatio-temporal wavelet-chaos methodology for EEG-based diagnosis of Alzheimer's disease , 2008, Neuroscience Letters.

[14]  H. Adeli,et al.  Fractality and a Wavelet-chaos-Methodology for EEG-based Diagnosis of Alzheimer Disease , 2011, Alzheimer disease and associated disorders.

[15]  Hojjat Adeli,et al.  Dynamic Wavelet Neural Network for Nonlinear Identification of Highrise Buildings , 2005 .

[16]  Andrei V. Medvedev,et al.  Abnormal interictal Gamma Activity May Manifest a Seizure Onset Zone in Temporal Lobe Epilepsy , 2011, Int. J. Neural Syst..

[17]  C. M. Lim,et al.  Analysis of epileptic EEG signals using higher order spectra , 2009, Journal of medical engineering & technology.

[18]  C. Dolea,et al.  World Health Organization , 1949, International Organization.

[19]  C. Elger,et al.  Epileptic Seizures and Epilepsy: Definitions Proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE) , 2005, Epilepsia.

[20]  Asim Karim,et al.  INCIDENT DETECTION ALGORITHM USING WAVELET ENERGY REPRESENTATION OF TRAFFIC PATTERNS , 2002 .

[21]  Pooja Rajdev,et al.  Effect of Stimulus Parameters in the Treatment of Seizures by Electrical Stimulation in the Kainate Animal Model , 2011, Int. J. Neural Syst..

[22]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Hojjat Adeli,et al.  Enhanced probabilistic neural network with local decision circles: A robust classifier , 2010, Integr. Comput. Aided Eng..

[24]  Hojjat Adeli,et al.  Pseudospectra, MUSIC, and dynamic wavelet neural network for damage detection of highrise buildings , 2007 .

[25]  Hojjat Adeli,et al.  A Wavelet-Chaos Methodology for Analysis of EEGs and EEG Subbands to Detect Seizure and Epilepsy , 2007, IEEE Transactions on Biomedical Engineering.

[26]  U. Rajendra Acharya,et al.  Application of Higher Order Spectra to Identify Epileptic EEG , 2011, Journal of Medical Systems.

[27]  U. Rajendra Acharya,et al.  Analysis and Automatic Identification of Sleep Stages Using Higher Order Spectra , 2010, Int. J. Neural Syst..

[28]  Asim Karim,et al.  Fast Automatic Incident Detection on Urban and Rural Freeways Using Wavelet Energy Algorithm , 2003 .

[29]  C. M. Lim,et al.  Automatic identification of epilepsy by HOS and power spectrum parameters using EEG signals: A comparative study , 2008, 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[30]  V. Srinivasan,et al.  Approximate Entropy-Based Epileptic EEG Detection Using Artificial Neural Networks , 2007, IEEE Transactions on Information Technology in Biomedicine.

[31]  Prognosis Guidelines for Epidemiologic Studies on Epilepsy , 1993, Epilepsia.

[32]  Kemal Polat,et al.  Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform , 2007, Appl. Math. Comput..

[33]  U. Rajendra Acharya,et al.  Author's Personal Copy Biomedical Signal Processing and Control Automated Diagnosis of Epileptic Eeg Using Entropies , 2022 .

[34]  Hojjat Adeli,et al.  A new supervised learning algorithm for multiple spiking neural networks with application in epilepsy and seizure detection , 2009, Neural Networks.

[35]  U. Rajendra Acharya,et al.  Automatic Detection of Epileptic EEG Signals Using Higher Order cumulant Features , 2011, Int. J. Neural Syst..

[36]  Hojjat Adeli,et al.  Improved spiking neural networks for EEG classification and epilepsy and seizure detection , 2007, Integr. Comput. Aided Eng..

[37]  Berj L. Bardakjian,et al.  Responsive Neuromodulators Based on Artificial Neural Networks Used to Control Seizure-like Events in a Computational Model of Epilepsy , 2011, Int. J. Neural Syst..

[38]  U. Rajendra Acharya,et al.  Use of principal component analysis for automatic classification of epileptic EEG activities in wavelet framework , 2012, Expert Syst. Appl..

[39]  Erik Olofsen,et al.  Entropies of the EEG: The effects of general anaesthesia , 2001 .

[40]  Hojjat Adeli,et al.  A probabilistic neural network for earthquake magnitude prediction , 2009, Neural Networks.

[41]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[42]  Xianghua Xie,et al.  Handbook of Texture Analysis , 2008 .

[43]  H. Adeli,et al.  Analysis of EEG records in an epileptic patient using wavelet transform , 2003, Journal of Neuroscience Methods.

[44]  Dimitrios I. Fotiadis,et al.  Automatic Seizure Detection Based on Time-Frequency Analysis and Artificial Neural Networks , 2007, Comput. Intell. Neurosci..

[45]  Yves Meyer,et al.  Wavelets and Applications , 1992 .

[46]  AdeliHojjat,et al.  A new supervised learning algorithm for multiple spiking neural networks with application in epilepsy and seizure detection , 2009 .

[47]  M. Baulac,et al.  Seizure anticipation: Are neurophenomenological approaches able to detect preictal symptoms? , 2006, Epilepsy & Behavior.

[48]  U. Rajendra Acharya,et al.  Non-linear analysis of EEG signals at various sleep stages , 2005, Comput. Methods Programs Biomed..

[49]  Abdulhamit Subasi,et al.  EEG signal classification using wavelet feature extraction and a mixture of expert model , 2007, Expert Syst. Appl..

[50]  G Swapna,et al.  Automated diagnosis of epileptic electroencephalogram using independent component analysis and discrete wavelet transform for different electroencephalogram durations. , 2013, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[51]  U. Rajendra Acharya,et al.  Application of Recurrence Quantification Analysis for the Automated Identification of Epileptic EEG Signals , 2011, Int. J. Neural Syst..

[52]  U. Rajendra Acharya,et al.  Application of Empirical Mode Decomposition (EMD) for Automated Detection of epilepsy using EEG signals , 2012, Int. J. Neural Syst..

[53]  V. Srinivasan,et al.  Artificial Neural Network Based Epileptic Detection Using Time-Domain and Frequency-Domain Features , 2005, Journal of Medical Systems.

[54]  Hojjat Adeli,et al.  Wavelet‐Clustering‐Neural Network Model for Freeway Incident Detection , 2003 .

[55]  Hojjat Adeli,et al.  Mixed-Band Wavelet-Chaos-Neural Network Methodology for Epilepsy and Epileptic Seizure Detection , 2007, IEEE Transactions on Biomedical Engineering.

[56]  Hasan Ocak,et al.  Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy , 2009, Expert Syst. Appl..

[57]  C. M. Lim,et al.  Automatic identification of epileptic electroencephalography signals using higher-order spectra , 2009, Proceedings of the Institution of Mechanical Engineers. Part H, Journal of engineering in medicine.

[58]  E. Y. K. Ng,et al.  Study of normal ocular thermogram using textural parameters , 2010 .

[59]  Madhuri S. Joshi,et al.  ECG Signal Processing: A Survey , 2012 .

[60]  Carlos E. M. Tassinari,et al.  Glossary of Descriptive Terminology for Ictal Semiology: Report of the ILAE Task Force on Classification and Terminology , 2001, Epilepsia.

[61]  Daniel Graupe,et al.  A neural-network-based detection of epilepsy , 2004, Neurological research.

[62]  U. Rajendra Acharya,et al.  Automatic Identification of Epileptic and Background EEG Signals Using Frequency Domain Parameters , 2010, Int. J. Neural Syst..

[63]  Elif Derya Übeyli,et al.  Recurrent neural networks employing Lyapunov exponents for EEG signals classification , 2005, Expert Syst. Appl..

[64]  Petra Perner,et al.  Data Mining - Concepts and Techniques , 2002, Künstliche Intell..

[65]  U. Rajendra Acharya,et al.  Application of Non-Linear and Wavelet Based Features for the Automated Identification of Epileptic EEG signals , 2012, Int. J. Neural Syst..

[66]  K Lehnertz,et al.  Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[67]  Maria Petrou,et al.  Image processing - dealing with texture , 2020 .

[68]  C. M. Lim,et al.  Cardiac state diagnosis using higher order spectra of heart rate variability , 2008, Journal of medical engineering & technology.

[69]  Hojjat Adeli,et al.  Fractality and a Wavelet-Chaos-Neural Network Methodology for EEG-Based Diagnosis of Autistic Spectrum Disorder , 2010, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[70]  Daniel A. Hein,et al.  Wavelet based analysis of multi-electrode EEG-signals in epilepsy , 2005, SPIE Microtechnologies.

[71]  Martin Vetterli,et al.  Wavelets and filter banks: theory and design , 1992, IEEE Trans. Signal Process..

[72]  Hojjat Adeli,et al.  Neural Network-Wavelet Microsimulation Model for Delay and Queue Length Estimation at Freeway Work Zones , 2006 .

[73]  Hojjat Adeli,et al.  Principal Component Analysis-Enhanced Cosine Radial Basis Function Neural Network for Robust Epilepsy and Seizure Detection , 2008, IEEE Transactions on Biomedical Engineering.

[74]  Hojjat Adeli,et al.  Wavelet-Synchronization Methodology: A New Approach for EEG-Based Diagnosis of ADHD , 2010, Clinical EEG and neuroscience.

[75]  Abdulhamit Subasi,et al.  EEG signal classification using PCA, ICA, LDA and support vector machines , 2010, Expert Syst. Appl..

[76]  Mary M. Galloway,et al.  Texture analysis using gray level run lengths , 1974 .

[77]  U. Rajendra Acharya,et al.  AUTOMATIC IDENTIFICATION OF EPILEPTIC EEG SIGNALS USING NONLINEAR PARAMETERS , 2009 .

[78]  W. Hauser,et al.  Comment on Epileptic Seizures and Epilepsy: Definitions Proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE) , 2005, Epilepsia.

[79]  Hojjat Adeli,et al.  Hybrid Control of Smart Structures Using a Novel Wavelet‐Based Algorithm , 2005 .