Ergodicity and exponential β-mixing bounds for multidimensional diffusions with jumps
暂无分享,去创建一个
[1] T. Simon. Support theorem for jump processes , 2000 .
[2] Nakahiro Yoshida,et al. Malliavin calculus, geometric mixing, and expansion of diffusion functionals , 2000 .
[3] Yasushi Ishikawa,et al. Malliavin calculus on the Wiener–Poisson space and its application to canonical SDE with jumps , 2006 .
[4] Jean Picard,et al. On the existence of smooth densities for jump processes , 1996 .
[5] Denis R. Bell. The Malliavin Calculus , 1987 .
[6] A. Shiryaev,et al. Limit Theorems for Stochastic Processes , 1987 .
[7] Nakahiro Yoshida,et al. Asymptotic expansion for Barndorff-Nielsen and Shephard's stochastic volatility model , 2005 .
[8] Y. Davydov. Mixing Conditions for Markov Chains , 1974 .
[9] Strong Feller property and irreducibility of diffusions with jumps , 1999 .
[10] R. Tweedie,et al. Langevin-Type Models I: Diffusions with Given Stationary Distributions and their Discretizations* , 1999 .
[11] J. Jacod,et al. Malliavin calculus for processes with jumps , 1987 .
[12] R. Bhattacharya. On the functional central limit theorem and the law of the iterated logarithm for Markov processes , 1982 .
[13] Yasutaka Shimizu. M-Estimation for Discretely Observed Ergodic Diffusion Processes with Infinitely Many Jumps , 2006 .
[14] S. Meyn,et al. Stability of Markovian processes I: criteria for discrete-time Chains , 1992, Advances in Applied Probability.
[15] Richard L. Tweedie,et al. Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.
[16] SIMPLE ESTIMATORS FOR PARAMETRIC MARKOVIAN TREND OF ERGODIC PROCESSES BASED ON SAMPLED DATA , 2005 .
[17] E. Gobet. LAN property for ergodic diffusions with discrete observations , 2002 .
[18] Hiroshi Kunita. The Support of Diffusion Process and Controllability Problem (PARTIAL DIFFERENTIAL EQUATIONS AND THEIR APPLICATIONS) , 1976 .
[19] Hiroki Masuda. On multidimensional Ornstein-Uhlenbeck processes driven by a general Lévy process , 2004 .
[20] A. V. D. Vaart,et al. Nonparametric inference for Lévy-driven Ornstein-Uhlenbeck processes , 2005 .
[21] L. Rogers. GENERAL THEORY OF MARKOV PROCESSES , 1989 .
[22] N. Yoshida,et al. Information Criteria in Model Selection for Mixing Processes , 2001 .
[23] David J. Goodman,et al. Personal Communications , 1994, Mobile Communications.
[24] Kai Liu. Stochastic Stability of Differential Equations in Abstract Spaces , 2019 .
[25] D. Applebaum. Lévy Processes and Stochastic Calculus: Preface , 2009 .
[26] H. H. Pu,et al. Verifying irreducibility and continuity of a nonlinear time series , 1998 .
[27] N. Yoshida. Partial mixing and Edgeworth expansion , 2004 .
[28] Nakahiro Yoshida,et al. Estimation of Parameters for Diffusion Processes with Jumps from Discrete Observations , 2006 .
[29] R. Tweedie,et al. EXISTENCE AND STABILITY OF WEAK SOLUTIONS TO STOCHASTIC DIFFERENTIAL EQUATIONS WITH NON-SMOOTH COEFFICIENTS , 1997 .
[30] Hiroki Masuda,et al. Ergodicity and exponential β-mixing bounds for a strong solution of Lévy-driven stochastic differential equations , 2022 .
[31] R. Tweedie,et al. Exponential convergence of Langevin distributions and their discrete approximations , 1996 .
[32] A. Veretennikov,et al. Bounds for the Mixing Rate in the Theory of Stochastic Equations , 1988 .
[33] Joanna Mitro. General theory of markov processes , 1991 .
[34] N. Yoshida,et al. Asymptotic expansion formulas for functionals of ε-Markov processes with a mixing property , 2004 .
[35] S. Meyn,et al. Stability of Markovian processes III: Foster–Lyapunov criteria for continuous-time processes , 1993, Advances in Applied Probability.