Chapter 7: Spectrahedral Approximations of Convex Hulls of Algebraic Sets

This chapter describes a method for finding spectrahedral approximations of the convex hull of a real algebraic variety (the set of real solutions to a finite system of polynomial equations). The procedure creates a nested sequence of convex approximations of the convex hull of the variety. Computations can be done modulo the ideal generated by the polynomials which has several advantages. We examine conditions under which the sequence of approximations converges to the closure of the convex hull of the real variety, either asymptotically or in finitely many steps, with special attention to the case in which the very first approximation yields a semidefinite representation of the convex hull. These methods allow optimization, or approximation of the optimal value, of a linear function over a real algebraic variety via semidefinite programming.

[1]  R. Tyrrell Rockafellar,et al.  Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.

[2]  Rekha R. Thomas,et al.  A new semidefinite programming hierarchy for cycles in binary matroids and cuts in graphs , 2009, Math. Program..

[3]  A. Ivic Sums of squares , 2020, An Introduction to 𝑞-analysis.

[4]  Claus Scheiderer,et al.  Sums of squares on real algebraic curves , 2003 .

[5]  A. Schrijver A Course in Combinatorial Optimization , 1990 .

[6]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[7]  Didier Henrion,et al.  Semidefinite Representation of Convex Hulls of Rational Varieties , 2009, ArXiv.

[8]  Jiawang Nie,et al.  First order conditions for semidefinite representations of convex sets defined by rational or singular polynomials , 2008, Math. Program..

[9]  Alexander Schrijver,et al.  Cones of Matrices and Set-Functions and 0-1 Optimization , 1991, SIAM J. Optim..

[10]  László Lovász,et al.  Semidefinite Programs and Combinatorial Optimization , 2003 .

[11]  Rekha R. Thomas,et al.  Theta Bodies for Polynomial Ideals , 2008, SIAM J. Optim..

[12]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[13]  Seth Sullivant Compressed polytopes and statistical disclosure limitation , 2004 .

[14]  Rekha R. Thomas,et al.  Convex Hulls of Algebraic Sets , 2012 .

[15]  Claus Scheiderer Convex hulls of curves of genus one , 2010 .

[16]  Levent Tunçel,et al.  Complexity Analyses of Bienstock-Zuckerberg and Lasserre Relaxations on the Matching and Stable Set Polytopes , 2011, IPCO.

[17]  M. Marshall Positive polynomials and sums of squares , 2008 .

[18]  David K. Smith Theory of Linear and Integer Programming , 1987 .

[19]  Ali Ridha Mahjoub,et al.  Composition of Graphs and the Triangle-Free Subgraph Polytope , 2002, J. Comb. Optim..

[20]  Claus Scheiderer,et al.  Sums of squares of regular functions on real algebraic varieties , 2000 .

[21]  Mihalis Yannakakis,et al.  Edge-Deletion Problems , 1981, SIAM J. Comput..

[22]  P. Seymour,et al.  The Strong Perfect Graph Theorem , 2002, math/0212070.

[23]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[24]  Richard P. Stanley,et al.  Decompositions of Rational Convex Polytopes , 1980 .

[25]  Monique Laurent,et al.  A Comparison of the Sherali-Adams, Lovász-Schrijver, and Lasserre Relaxations for 0-1 Programming , 2003, Math. Oper. Res..

[26]  Egon Balas,et al.  A lift-and-project cutting plane algorithm for mixed 0–1 programs , 1993, Math. Program..

[27]  Hanif D. Sherali,et al.  A Hierarchy of Relaxations Between the Continuous and Convex Hull Representations for Zero-One Programming Problems , 1990, SIAM J. Discret. Math..

[28]  László Lovász,et al.  On the Shannon capacity of a graph , 1979, IEEE Trans. Inf. Theory.

[29]  William J. Cook,et al.  Combinatorial optimization , 1997 .

[30]  Claus Scheiderer,et al.  Sums of squares on real algebraic surfaces , 2006 .

[31]  Jean B. Lasserre,et al.  Global Optimization with Polynomials and the Problem of Moments , 2000, SIAM J. Optim..

[32]  Brian Osserman,et al.  Strong nonnegativity and sums of squares on real varieties , 2011, 1101.0826.

[33]  H. P. Williams THEORY OF LINEAR AND INTEGER PROGRAMMING (Wiley-Interscience Series in Discrete Mathematics and Optimization) , 1989 .