Reliable quantum computers

The new field of quantum error correction has developed spectacularly since its origin less than two years ago. Encoded quantum information can be protected from errors that arise due to uncontrolled interactions with the environment. Recovery from errors can work effectively even if occasional mistakes occur during the recovery procedure. Furthermore, encoded quantum information can be processed without serious propagation of errors. Hence, an arbitrarily long quantum computation can be performed reliably, provided that the average probability of error per quantum gate is less than a certain critical value, the accuracy threshold. A quantum computer storing about 106 qubits, with a probability of error per quantum gate of order 10–6, would be a formidable factoring engine. Even a smaller less–accurate quantum computer would be able to perform many useful tasks. This paper is based on a talk presented at the ITP Conference on Quantum Coherence and Decoherence, 15 to 18 December 1996.

[1]  A. Soni,et al.  Graviton production by two photon and electron photon processes in Kaluza-Klein theories with large extra dimensions , 1999, hep-ph/9909392.

[2]  Timothy F. Havel,et al.  Nuclear magnetic resonance spectroscopy: an experimentally accessible paradigm for quantum computing , 1997, quant-ph/9709001.

[3]  J. Preskill Quantum computing: pro and con , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[4]  E. Knill,et al.  Resilient quantum computation: error models and thresholds , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[5]  D. Gottesman Theory of fault-tolerant quantum computation , 1997, quant-ph/9702029.

[6]  N. Sloane,et al.  Quantum Error Correction Via Codes Over GF , 1998 .

[7]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[8]  J. Paz,et al.  QUANTUM COMPUTATION WITH PHASE DRIFT ERRORS , 1997, quant-ph/9704003.

[9]  N. Gershenfeld,et al.  Bulk Spin-Resonance Quantum Computation , 1997, Science.

[10]  A. Steane Active Stabilization, Quantum Computation, and Quantum State Synthesis , 1996, quant-ph/9611027.

[11]  M. Ben-Or,et al.  Fault-tolerant quantum computation with constant error , 1996, STOC '97.

[12]  T. Beth,et al.  Codes for the quantum erasure channel , 1996, quant-ph/9610042.

[13]  P. Knight,et al.  Decoherence limits to quantum computation using trapped ions , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[14]  N. Sloane,et al.  Quantum error correction via codes over GF(4) , 1996, Proceedings of IEEE International Symposium on Information Theory.

[15]  A. Calderbank,et al.  Quantum Error Correction and Orthogonal Geometry , 1996, quant-ph/9605005.

[16]  E. Knill,et al.  Theory of quantum error-correcting codes , 1996, quant-ph/9604034.

[17]  S. Lloyd Capacity of the noisy quantum channel , 1996, quant-ph/9604015.

[18]  A. Kitaev Quantum Error Correction with Imperfect Gates , 1997 .

[19]  Christof Zalka Threshold Estimate for Fault Tolerant Quantum Computing , 1997 .

[20]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[21]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[22]  R. Landauer The physical nature of information , 1996 .

[23]  E. Knill,et al.  Concatenated Quantum Codes , 1996, quant-ph/9608012.

[24]  DiVincenzo,et al.  Fault-Tolerant Error Correction with Efficient Quantum Codes. , 1996, Physical review letters.

[25]  Gottesman,et al.  Class of quantum error-correcting codes saturating the quantum Hamming bound. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[26]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[27]  P. Shor,et al.  Quantum Error-Correcting Codes Need Not Completely Reveal the Error Syndrome , 1996, quant-ph/9604006.

[28]  Laflamme,et al.  Perfect Quantum Error Correction Code , 1996, quant-ph/9602019.

[29]  Preskill,et al.  Efficient networks for quantum factoring. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[30]  A. Steane Multiple-particle interference and quantum error correction , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[31]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[32]  Barenco,et al.  Quantum networks for elementary arithmetic operations. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[33]  Griffiths,et al.  Semiclassical Fourier transform for quantum computation. , 1995, Physical review letters.

[34]  E. Knill,et al.  Accuracy threshold for quantum computation , 1996 .

[35]  Alvin M. Despain,et al.  Simulation of Factoring on a Quantum Computer Architecture , 1996 .

[36]  Hood,et al.  Measurement of conditional phase shifts for quantum logic. , 1995, Physical review letters.

[37]  King,et al.  Demonstration of a fundamental quantum logic gate. , 1995, Physical review letters.

[38]  R. Landauer Is quantum mechanics useful , 1995 .

[39]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[40]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[41]  Unruh,et al.  Maintaining coherence in quantum computers. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[42]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[43]  Lynn W. Jelinski,et al.  Nuclear magnetic resonance spectroscopy. , 1990, Analytical chemistry.

[44]  D. Dieks Communication by EPR devices , 1982 .

[45]  W. Wootters,et al.  A single quantum cannot be cloned , 1982, Nature.

[46]  The path to perfection : Quantum dots in electrically-controlled cavities yield bright , nearly identical photons , 2022 .

[47]  O. Antoine,et al.  Theory of Error-correcting Codes , 2022 .