Ensemble‐based simultaneous state and parameter estimation with MM5

] The performance of the ensemble Kalman filter(EnKF) under imperfect model conditions is investigatedthrough simultaneous state and parameter estimation for anumerical weather prediction model of operationalcomplexity (MM5). The source of model error is assumedto be the uncertainty in the vertical eddy mixing coefficient.Assimilations are performed with a 12-hour interval withsimulated sounding and surface observations of horizontalwinds and temperature. The mean estimated parametervalue nicely converges to the true value within a satisfactorylevel of variability due to sufficient model sensitivity toparameter uncertainty and detectable (relative to ensemblesampling noise) correlation signal between the parameterand observed variables.

[1]  A. Simmons,et al.  The ECMWF operational implementation of four‐dimensional variational assimilation. I: Experimental results with simplified physics , 2007 .

[2]  Fuqing Zhang,et al.  Tests of an Ensemble Kalman Filter for Mesoscale and Regional-Scale Data Assimilation. Part I: Perfect Model Experiments , 2006 .

[3]  S. Cohn,et al.  Ooce Note Series on Global Modeling and Data Assimilation Construction of Correlation Functions in Two and Three Dimensions and Convolution Covariance Functions , 2022 .

[4]  James D. Annan,et al.  Parameter estimation in an intermediate complexity earth system model using an ensemble Kalman filter , 2005 .

[5]  Fuqing Zhang,et al.  Ensemble‐based data assimilation for thermally forced circulations , 2005 .

[6]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[7]  Juanzhen Sun,et al.  Impacts of Initial Estimate and Observation Availability on Convective-Scale Data Assimilation with an Ensemble Kalman Filter , 2004 .

[8]  J. Dudhia A Nonhydrostatic Version of the Penn State–NCAR Mesoscale Model: Validation Tests and Simulation of an Atlantic Cyclone and Cold Front , 1993 .

[9]  Chris Snyder,et al.  Ensemble Kalman Filter Assimilation of Fixed Screen-Height Observations in a Parameterized PBL , 2005 .

[10]  Mingjing Tong,et al.  Ensemble kalman filter assimilation of doppler radar data with a compressible nonhydrostatic model : OSS experiments , 2005 .

[11]  Jeffrey L. Anderson An Ensemble Adjustment Kalman Filter for Data Assimilation , 2001 .

[12]  M. Buehner,et al.  Atmospheric Data Assimilation with an Ensemble Kalman Filter: Results with Real Observations , 2005 .

[13]  Fuqing Zhang,et al.  Tests of an Ensemble Kalman Filter for Mesoscale and Regional-Scale Data Assimilation. Part IV: Comparison with 3DVAR in a Month-Long Experiment , 2007 .

[14]  Andrew C. Lorenc,et al.  The potential of the ensemble Kalman filter for NWP—a comparison with 4D‐Var , 2003 .

[15]  Geir Evensen,et al.  The Ensemble Kalman Filter: theoretical formulation and practical implementation , 2003 .

[16]  Fuqing Zhang,et al.  Ensemble-based simultaneous state and parameter estimation in a two-dimensional sea-breeze model , 2006 .

[17]  C. Snyder,et al.  Assimilation of Simulated Doppler Radar Observations with an Ensemble Kalman Filter , 2003 .

[18]  Jean-Noël Thépaut,et al.  Impact of the Digital Filter as a Weak Constraint in the Preoperational 4DVAR Assimilation System of Météo-France , 2001 .

[19]  H. Pan,et al.  Nonlocal Boundary Layer Vertical Diffusion in a Medium-Range Forecast Model , 1996 .

[20]  Louis J. Wicker,et al.  Wind and Temperature Retrievals in the 17 May 1981 Arcadia, Oklahoma, Supercell: Ensemble Kalman Filter Experiments , 2004 .

[21]  Julia C. Hargreaves,et al.  Parameter estimation in an atmospheric GCM using the Ensemble , 2005 .