A logarithm barrier method for semi-definite programming
暂无分享,去创建一个
[1] Michael L. Overton,et al. Primal-Dual Interior-Point Methods for Semidefinite Programming: Convergence Rates, Stability and Numerical Results , 1998, SIAM J. Optim..
[2] D K Smith,et al. Numerical Optimization , 2001, J. Oper. Res. Soc..
[3] J. Frédéric Bonnans,et al. Numerical Optimization: Theoretical and Practical Aspects (Universitext) , 2006 .
[4] H. Wolkowicz,et al. Bounds for eigenvalues using traces , 1980 .
[5] Ming Gu,et al. Primal-Dual Interior-Point Methods for Semidefinite Programming in Finite Precision , 1999, SIAM J. Optim..
[6] Stephen P. Boyd,et al. Semidefinite Programming , 1996, SIAM Rev..
[7] Michael L. Overton,et al. Semidefinite programming , 1997, Math. Program..
[8] A. Seeger,et al. New Bounds for the Extreme Values of a Finite Sample of Real Numbers , 1996 .
[9] Jean Charles Gilbert,et al. Numerical Optimization: Theoretical and Practical Aspects , 2003 .
[10] Farid Alizadeh,et al. Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization , 1995, SIAM J. Optim..
[11] R. Tyrrell Rockafellar,et al. Convex Analysis , 1970, Princeton Landmarks in Mathematics and Physics.
[12] Shinji Hara,et al. Interior Point Methods for the Monotone Linear Complementarity Problem in Symmetric Matrices , 1995 .
[13] Djamel Benterki,et al. A numerical implementation of an interior point method for semidefinite programming , 2003 .