Associative NIL-Algebras over Finite Fields

The nilpotency degree of a relatively free finitely generated associative algebra with the identity $x^n=0$ is studied over finite fields.

[1]  Alexei Kanel-Belov,et al.  Computational Aspects of Polynomial Identities , 2005 .

[2]  P. Hall,et al.  On a conjecture of Nagata , 1956, Mathematical Proceedings of the Cambridge Philosophical Society.

[3]  A. Lopatin Indecomposable Invariants of Quivers for Dimension (2,…,2) and Maximal Paths , 2007, 1004.4578.

[4]  Bettina Eick Computing Nilpotent Quotients of Associative Algebras and Algebras Satisfying a Polynomial Identity , 2011, Int. J. Algebra Comput..

[5]  A. A. Lopatin Relatively Free Algebras with the Identity x 3 = 0 , 2005 .

[6]  Vesselin Drensky,et al.  Polynomial Identity Rings , 2004 .

[7]  Konstantin Aleksandrovich Zhevlakov,et al.  Rings that are nearly associative , 1982 .

[8]  J. Osborn Review: K. A. Zhevlakov, A. M. Slin′ko, I. P. Shestakov and A. I. Shirshov, Rings that are nearly associative , 1983 .

[9]  Mátyás Domokos,et al.  Rings of matrix invariants in positive characteristic , 2002 .

[10]  Efim Zelmanov,et al.  SOME OPEN PROBLEMS IN THE THEORY OF INFINITE DIMENSIONAL ALGEBRAS , 2007 .

[11]  On the nilpotency degree of the algebra with identity x^n=0 , 2011, 1106.0950.

[12]  Ivan Shestakov,et al.  c ○ Journal “Algebra and Discrete Mathematics” On associative algebras satisfying the identity , 2022 .

[13]  Michael R. Vaughan-Lee,et al.  An Algorithm for Computing Graded Algebras , 1993, J. Symb. Comput..

[14]  Stephen Donkin,et al.  Invariants of several matrices , 1992 .

[16]  Woo Lee ON NAGATA-HIGMAN THEOREM , 2009 .