Distributed, layered and reliable computing nets to represent neuronal receptive fields.

Receptive fields of retinal and other sensory neurons show a large variety of spatiotemporal linear and non linear types of responses to local stimuli. In visual neurons, these responses present either asymmetric sensitive zones or center-surround organization. In most cases, the nature of the responses suggests the existence of a kind of distributed computation prior to the integration by the final cell which is evidently supported by the anatomy. We describe a new kind of discrete and continuous filters to model the kind of computations taking place in the receptive fields of retinal cells. To show their performance in the analysis of different non-trivial neuron-like structures, we use a computer tool specifically programmed by the authors to that effect. This tool is also extended to study the effect of lesions on the whole performance of our model nets.

[1]  Roberto Moreno-Díaz,et al.  On Some Methods in Neuromathematics , 1995, IWANN.

[2]  P Z Marmarelis,et al.  Nonlinear analysis and synthesis of receptive-field responses in the catfish retina. II. One-input white-noise analysis. , 1973, Journal of neurophysiology.

[3]  Gabriel de Blasio,et al.  Systems Methods in Visual Modelling , 2003 .

[4]  W. R. Taylor,et al.  Local Edge Detectors: A Substrate for Fine Spatial Vision at Low Temporal Frequencies in Rabbit Retina , 2006, The Journal of Neuroscience.

[5]  W. McCulloch,et al.  Embodiments of Mind , 1966 .

[6]  S. Barbay,et al.  Reorganization of remote cortical regions after ischemic brain injury: a potential substrate for stroke recovery. , 2003, Journal of neurophysiology.

[7]  H. Kolb How the Retina Works , 2003, American Scientist.

[8]  Frank S. Werblin,et al.  The computational eye , 1996 .

[9]  H. Barlow Summation and inhibition in the frog's retina , 1953, The Journal of physiology.

[10]  H. Wässle,et al.  Receptive field properties of ON- and OFF-ganglion cells in the mouse retina , 2009, Visual Neuroscience.

[11]  Roberto Moreno-Díaz,et al.  Bioinspired computing nets for directionality in vision , 2012, Computing.

[12]  Georg Schweigart,et al.  Activity‐dependent receptive field changes in the surround of adult cat visual cortex lesions , 2002, The European journal of neuroscience.

[13]  Rene F. Swarttouw,et al.  Orthogonal polynomials , 2020, NIST Handbook of Mathematical Functions.

[14]  M. London,et al.  Dendritic computation. , 2005, Annual review of neuroscience.

[15]  R. W. Rodieck,et al.  Response of cat retinal ganglion cells to moving visual patterns. , 1965, Journal of neurophysiology.

[16]  K. Naka,et al.  Nonlinear analysis and synthesis of receptive-field responses in the catfish retina. 3. Two-input white-noise analysis. , 1973, Journal of neurophysiology.

[17]  Moreno Díaz,et al.  Computación paralela y distribuída: relaciones estructura-función en retinas: redes de Newton, transformadas de Hermite, complitud, cooperación y óptimos , 1993 .

[18]  Roberto Moreno-Díaz,et al.  Systems and Computational Tools for Neuronal Retinal Models , 2003, EUROCAST.

[19]  J. Troy,et al.  Effects of Remote Stimulation on the Modulated Activity of Cat Retinal Ganglion Cells , 2009, The Journal of Neuroscience.

[20]  Refractor Vision , 2000, The Lancet.

[21]  W. Wang,et al.  Orientation biased extended surround of the receptive field of cat retinal ganglion cells , 2000, Neuroscience.

[22]  D. Hubel,et al.  Anatomical Demonstration of Columns in the Monkey Striate Cortex , 1969, Nature.

[23]  Roberto Moreno-Díaz,et al.  New Biomimetic Neural Structures for Artificial Neural Nets , 2011, EUROCAST.

[24]  S. W. Kuffler Discharge patterns and functional organization of mammalian retina. , 1953, Journal of neurophysiology.

[25]  Yoichiro Tokutake,et al.  Retinal ganglion cells – spatial organization of the receptive field reduces temporal redundancy , 2008, The European journal of neuroscience.

[26]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[27]  Idan Segev,et al.  What do dendrites and their synapses tell the neuron? , 2006, Journal of neurophysiology.

[28]  Karolin Papst,et al.  Functions Of Mathematical Physics , 2016 .

[29]  Nicolai Petkov,et al.  From Natural to Artificial Neural Computation , 1995, Lecture Notes in Computer Science.

[30]  R. W. Rodieck Quantitative analysis of cat retinal ganglion cell response to visual stimuli. , 1965, Vision research.

[31]  P. Hammond Contrasts in spatial organization of receptive fields at geniculate and retinal levels: centre surround and outer surround , 1973, The Journal of physiology.

[32]  J. Troy,et al.  The receptive fields of cat retinal ganglion cells in physiological and pathological states: where we are after half a century of research , 2002, Progress in Retinal and Eye Research.

[33]  Feller William,et al.  An Introduction To Probability Theory And Its Applications , 1950 .

[34]  Li Chao-Yi,et al.  Extensive disinhibitory region beyond the classical receptive field of cat retinal ganglion cells , 1992, Vision Research.

[35]  William H. Press,et al.  Numerical recipes: the art of scientific computing, 3rd Edition , 2007 .