3D Hierarchical Co3O4 Twin‐Spheres with an Urchin‐Like Structure: Large‐Scale Synthesis, Multistep‐Splitting Growth, and Electrochemical Pseudocapacitors

Novel, 3D hierarchical Co3O4 twin-spheres with an urchin-like structure are produced successfully on the large scale for the first time by a solvothermal synthesis of cobalt carbonate hydroxide hydrate, Co(CO3)0.5(OH)·0.11H2O, and its subsequent calcination. The morphology of the precursor, which dominates the structure of the final product, evolves from nanorods to sheaf-like bundles, to flower-like structures, to dumbbell-like particles, and eventually to twin-spheres, accompanying a prolonged reaction time. A multistep-splitting growth mechanism is proposed to understand the formation of the 3D hierarchical twin-spheres of the precursor, based on the time effect on the morphologies of the precursor. The 3D hierarchical Co3O4 twin-spheres are further used as electrode materials to fabricate supercapacitors with high specific capacitances of 781, 754, 700, 670, and 611 F g−1 at current densities of 0.5, 1, 2, 4, and 8 A g−1, respectively. The devices also show high charge-discharge reversibility with an efficiency of 97.8% after cycling 1000 times at a current density of 4 A g−1.

[1]  Shih‐Yuan Lu,et al.  Cobalt Oxide Aerogels of Ideal Supercapacitive Properties Prepared with an Epoxide Synthetic Route , 2009 .

[2]  Justin C. Lytle,et al.  Multifunctional 3D nanoarchitectures for energy storage and conversion. , 2009, Chemical Society reviews.

[3]  Jian-qing Zhang,et al.  Synthesis of foam-like freestanding Co3O4 nanosheets with enhanced electrochemical activities. , 2011, Chemical communications.

[4]  John R. Miller,et al.  Electrochemical Capacitors for Energy Management , 2008, Science.

[5]  Songhun Yoon,et al.  Investigation of Pseudocapacitive Charge-Storage Behavior in Highly Conductive Ordered Mesoporous Tungsten Oxide Electrodes , 2011 .

[6]  Huanlei Wang,et al.  Facile approach to prepare nickel cobaltite nanowire materials for supercapacitors. , 2011, Small.

[7]  Xiaogang Zhang,et al.  Soft template synthesis of mesoporous Co3O4/RuO2·xH2O composites for electrochemical capacitors , 2008 .

[8]  Yitai Qian,et al.  Controllable synthesis of mesoporous Co3O4 nanostructures with tunable morphology for application in supercapacitors. , 2009, Chemistry.

[9]  Yu Ri Lee,et al.  Porously Assembled 2D Nanosheets of Alkali Metal Manganese Oxides with Highly Reversible Pseudocapacitance Behaviors , 2010 .

[10]  G. R. Rao,et al.  Effect of Microwave on the Nanowire Morphology, Optical, Magnetic, and Pseudocapacitance Behavior of Co3O4 , 2011 .

[11]  W. Sugimoto,et al.  Preparation of ruthenic acid nanosheets and utilization of its interlayer surface for electrochemical energy storage. , 2003, Angewandte Chemie.

[12]  P. Taberna,et al.  Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors , 2010, Science.

[13]  D. Mitlin,et al.  Supercapacitive Properties of Hydrothermally Synthesized Co3O4 Nanostructures , 2011 .

[14]  Xiaogang Zhang,et al.  Urchin-like Co3O4 microspherical hierarchical superstructures constructed by one-dimension nanowires toward electrochemical capacitors , 2011 .

[15]  S. G. Kandalkar,et al.  Structural, morphological, and electrical characteristics of the electrodeposited cobalt oxide electrode for supercapacitor applications , 2011 .

[16]  Ke‐long Huang,et al.  Co3O4 thin film prepared by a chemical bath deposition for electrochemical capacitors , 2011 .

[17]  R. Penner,et al.  Mesoporous manganese oxide nanowires for high-capacity, high-rate, hybrid electrical energy storage. , 2011, ACS nano.

[18]  Shuli Chen,et al.  Electrochemical capacitance of Co3O4 nanowire arrays supported on nickel foam , 2010 .

[19]  Chang Liu,et al.  Advanced Materials for Energy Storage , 2010, Advanced materials.

[20]  Tingting Zhu,et al.  Preparation and characterization of mesoporous Co3O4 electrode material , 2011 .

[21]  X. Xia,et al.  Pseudocapacitive properties of electrodeposited porous nanowall Co3O4 film , 2011 .

[22]  Qihua Wang,et al.  Morphology-controllable synthesis of cobalt oxalates and their conversion to mesoporous Co3O4 nanostructures for application in supercapacitors. , 2011, Inorganic chemistry.

[23]  G. R. Rao,et al.  Ultralayered Co3O4 for High-Performance Supercapacitor Applications , 2011 .

[24]  P. Bruce,et al.  Nanostructured materials for advanced energy conversion and storage devices , 2005, Nature materials.

[25]  Ke‐long Huang,et al.  Meso-macroporous Co3O4 electrode prepared by polystyrene spheres and carbowax templates for supercapacitors , 2011 .

[26]  Chi-Chang Hu,et al.  Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. , 2006, Nano letters.

[27]  Xin Wang,et al.  Electrochemical capacitance study on Co3O4 nanowires for super capacitors application , 2011 .

[28]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[29]  S. G. Kandalkar,et al.  Chemical synthesis of cobalt oxide thin film electrode for supercapacitor application , 2010 .

[30]  Jim P. Zheng,et al.  Hydrous Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors , 1995 .

[31]  Minwei Xu,et al.  Molten hydroxides synthesis of hierarchical cobalt oxide nanostructure and its application as anode material for lithium ion batteries , 2011 .

[32]  Qihua Wang,et al.  Controlled synthesis of mesoporous hematite nanostructures and their application as electrochemical capacitor electrodes , 2011, Nanotechnology.

[33]  Xing Xie,et al.  High-performance nanostructured supercapacitors on a sponge. , 2011, Nano letters.

[34]  Andrew Cruden,et al.  Energy storage in electrochemical capacitors: designing functional materials to improve performance , 2010 .

[35]  X. Lou,et al.  Shape-controlled synthesis of porous Co3O4 nanostructures for application in supercapacitors , 2010 .

[36]  S. G. Kandalkar,et al.  Preparation of cobalt oxide thin films and its use in supercapacitor application , 2008 .

[37]  H. Gong,et al.  Co3O4 Nanowire@MnO2 Ultrathin Nanosheet Core/Shell Arrays: A New Class of High‐Performance Pseudocapacitive Materials , 2011, Advanced materials.

[38]  John Wang,et al.  Ordered mesoporous alpha-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. , 2010, Nature materials.

[39]  Xin Wang,et al.  Preparation and electrochemical properties of mesoporous Co3O4 crater-like microspheres as supercapacitor electrode materials , 2010 .

[40]  K. Hata,et al.  Shape-engineerable and highly densely packed single-walled carbon nanotubes and their application as super-capacitor electrodes , 2006, Nature materials.

[41]  Henghui Zhou,et al.  Topotactic Transformation of Single‐Crystalline Precursor Discs into Disc‐Like Bi2S3 Nanorod Networks , 2008 .

[42]  M. Zheng,et al.  Preparation of Mesoporous Co3O4 Nanoparticles via Solid−Liquid Route and Effects of Calcination Temperature and Textural Parameters on Their Electrochemical Capacitive Behaviors , 2009 .

[43]  Yunlong Zhao,et al.  Hierarchical MnMoO(4)/CoMoO(4) heterostructured nanowires with enhanced supercapacitor performance. , 2011, Nature communications.

[44]  Shihe Yang,et al.  Sequential crystallization of sea urchin-like bimetallic (Ni, Co) carbonate hydroxide and its morphology conserved conversion to porous NiCo2O4 spinel for pseudocapacitors , 2011 .

[45]  U. Kolb,et al.  Direct access to metal or metal oxide nanocrystals integrated with one-dimensional nanoporous carbons for electrochemical energy storage. , 2010, Journal of the American Chemical Society.

[46]  Xiuli Wang,et al.  Self-supported hydrothermal synthesized hollow Co3O4 nanowire arrays with high supercapacitor capacitance , 2011 .

[47]  Xiaogang Zhang,et al.  Large-scale Co3O4 nanoparticles growing on nickel sheets via a one-step strategy and their ultra-highly reversible redox reaction toward supercapacitors , 2011 .

[48]  Zheng Hu,et al.  Carbon Nanocages as Supercapacitor Electrode Materials , 2012, Advanced materials.

[49]  F. Wei,et al.  Asymmetric Supercapacitors Based on Graphene/MnO2 and Activated Carbon Nanofiber Electrodes with High Power and Energy Density , 2011 .

[50]  Xiu‐Ping Yan,et al.  Facile shape-controlled synthesis of well-aligned nanowire architectures in binary aqueous solution. , 2007, Angewandte Chemie.

[51]  Juan Xu,et al.  Preparation and electrochemical capacitance of cobalt oxide (Co3O4) nanotubes as supercapacitor material , 2010 .

[52]  Yu‐Guo Guo,et al.  Synthesis and Lithium Storage Properties of Co3O4 Nanosheet‐Assembled Multishelled Hollow Spheres , 2010 .

[53]  Shashibhushan B. Mahadik,et al.  Supercapacitive cobalt oxide (Co 3O 4) thin films by spray pyrolysis , 2006 .

[54]  Husam N. Alshareef,et al.  Symmetrical MnO2-carbon nanotube-textile nanostructures for wearable pseudocapacitors with high mass loading. , 2011, ACS nano.

[55]  Xiaodong Wu,et al.  Graphene oxide--MnO2 nanocomposites for supercapacitors. , 2010, ACS nano.