Numerical Simulation of Doping Process by BBr3 Tube Diffusion for Industrial n -Type Silicon Wafer Solar Cells

Efficient optimization of the boron-doped region of silicon solar cells requires reliable process simulation of boron tube diffusion. Established simulation models and parameters are mostly calibrated for complementary metal oxide semiconductor device fabrication, where the doping processes are significantly different from those used in solar cell fabrication. In this paper, we present models and a set of corresponding parameters that are suitable for process simulation of BBr3 tube diffusion for solar cell applications with Sentaurus TCAD. Experimental doping profiles obtained with a wide range of diffusion recipes are compared with simulation results. Additionally, with the process parameter sensitivity analysis, we demonstrate the dominant process parameters that alter the boron distribution profile and its effect on the electrical performance.

[1]  F. Clement,et al.  Extending the limits of screen-printed metallization of phosphorus- and boron-doped surfaces , 2016 .

[2]  R. Naber,et al.  Optimization of BBr3 Diffusion Processes for n-Type Silicon Solar Cells , 2015 .

[3]  Heiko Steinkemper,et al.  Input Parameters for the Simulation of Silicon Solar Cells in 2014 , 2015, IEEE Journal of Photovoltaics.

[4]  G. Samudra,et al.  Two-dimensional numerical simulation of boron diffusion for pyramidally textured silicon , 2014 .

[5]  W. Vandervorst,et al.  Process modeling for doped regions formation on high efficiency crystalline silicon solar cells , 2014 .

[6]  G. Hahn,et al.  Study on boron emitter formation by BBr 3 diffusion for n-type Si solar cell applications , 2013 .

[7]  F. Priolo,et al.  Mechanisms of boron diffusion in silicon and germanium , 2013 .

[8]  K. Bothe,et al.  Impact of the Rear Surface Roughness on Industrial-Type PERC Solar Cells , 2012 .

[9]  A. Aberle,et al.  Excellent boron emitter passivation for high‐efficiency Si wafer solar cells using AlOx/SiNx dielectric stacks deposited in an industrial inline plasma reactor , 2012 .

[10]  Y. Cuminal,et al.  Modelling and Analysis of the Emitter Boron Process under BCL3 and O2 for Industrial Silicon Solar Cells Applications , 2011 .

[11]  F. Martinez,et al.  Modeling of the Boron Emitter Formation Process from BCl3 Diffusion for N-Type Silicon Solar Cells Processing , 2011 .

[12]  P. Altermatt,et al.  A freeware 1D emitter model for silicon solar cells , 2010, 2010 35th IEEE Photovoltaic Specialists Conference.

[13]  Y. Ohji,et al.  Accurate Determination of the Intrinsic Diffusivities of Boron, Phosphorus, and Arsenic in Silicon: The Influence of SiO2 Films , 2008 .

[14]  E. Haller,et al.  Self- and foreign-atom diffusion in semiconductor isotope heterostructures. II. Experimental results for silicon , 2007 .

[15]  F.W. Chen,et al.  P-Type Versus n-Type Silicon Wafers: Prospects for High-Efficiency Commercial Silicon Solar Cells , 2006, IEEE Transactions on Electron Devices.

[16]  M. Jaraíz,et al.  Dose loss and segregation of boron and arsenic at the Si/SiO2 interface by atomistic kinetic Monte Carlo simulations , 2005 .

[17]  D. Macdonald,et al.  Recombination activity of interstitial iron and other transition metal point defects in p- and n-type crystalline silicon , 2004 .

[18]  P. Pichler Intrinsic Point Defects, Impurities, and Their Diffusion in Silicon , 2004 .

[19]  Wilhelm Warta,et al.  Minority carrier lifetime degradation in boron-doped Czochralski silicon , 2001 .

[20]  A. Sieck,et al.  Atomic-scale characterization of boron diffusion in silicon , 2001 .

[21]  Babak Sadigh,et al.  MECHANISM OF BORON DIFFUSION IN SILICON : AN AB INITIO AND KINETIC MONTE CARLO STUDY , 1999 .

[22]  Scott T. Dunham,et al.  First-Principles Study of Boron Diffusion in Silicon , 1999 .

[23]  J. Plummer,et al.  Oxidation-enhanced diffusion of boron and phosphorus in heavily doped layers in silicon , 1994 .

[24]  D.B.M. Klaassen,et al.  A unified mobility model for device simulation—II. Temperature dependence of carrier mobility and lifetime , 1992 .

[25]  D.B.M. Klaassen,et al.  A unified mobility model for device simulation—I. Model equations and concentration dependence , 1992 .

[26]  Cowern,et al.  Impurity diffusion via an intermediate species: The B-Si system. , 1990, Physical review letters.

[27]  Nichols,et al.  Mechanisms of equilibrium and nonequilibrium diffusion of dopants in silicon. , 1989, Physical review letters.

[28]  James D. Plummer,et al.  Thermal Oxidation of Silicon in Dry Oxygen: Growth‐Rate Enhancement in the Thin Regime II . Physical Mechanisms , 1985 .

[29]  Richard B. Fair,et al.  Oxidation, Impurity Diffusion, and Defect Growth in Silicon—An Overview , 1981 .

[30]  K. Taniguchi,et al.  Oxidation Enhanced Diffusion of Boron and Phosphorus in (100) Silicon , 1980 .

[31]  James D. Plummer,et al.  Si / SiO2 Interface Oxidation Kinetics: A Physical Model for the Influence of High Substrate Doping Levels I . Theory , 1979 .

[32]  S. P. Murarka,et al.  Diffusion and segregation of ion-implanted boron in silicon in dry oxygen ambients , 1975 .

[33]  R. Fair,et al.  Diffusion of ion-implanted B in high concentration P- and As-doped silicon , 1975 .

[34]  S. M. Hu,et al.  Formation of stacking faults and enhanced diffusion in the oxidation of silicon , 1974 .

[35]  A. S. Grove,et al.  General Relationship for the Thermal Oxidation of Silicon , 1965 .

[36]  Bram,et al.  MODELLING AND CHARACTERIZATION OF BBr3 BORON DIFFUSION PROCESS FOR N-Type SI WAFER SOLAR CELLS , 2015 .

[37]  M. Schubert,et al.  Predictive Simulation of Doping Processes for Silicon Solar Cells , 2013 .

[38]  Nico Wöhrle,et al.  Optical Modeling of the Rear Surface Roughness of Passivated Silicon Solar Cells , 2012 .