Progress in high repetition rate soft x-ray laser development and pump lasers at Colorado State University

We will review recent progress in the development of high repetition, high average power rate soft x-ray lasers at 10-20 nm wavelength at Colorado State University, and the compact diode- pumped solid state lasers that drive them. The latter includes the development of a 1 J picosecond laser capable of operating at 500 Hz repetition rate. Results that demonstrate soft x-ray laser operation at the highest repetition rate reported to date: 400 Hz, and prospects of the use of these lasers in applications are discussed.

[1]  Tso Yee Fan,et al.  Sub-picosecond pulses at 100 W average power from a Yb:YLF chirped-pulse amplification system. , 2012, Optics letters.

[2]  Jorge J. Rocca,et al.  High-average-power, 100-Hz-repetition-rate, tabletop soft-x-ray lasers at sub-15-nm wavelengths , 2014 .

[3]  B M Luther,et al.  Demonstration of a compact 100 Hz, 0.1 J, diode-pumped picosecond laser. , 2011, Optics letters.

[4]  K. Dupraz,et al.  Design and optimization of a highly efficient optical multipass system for γ -ray beam production from electron laser beam Compton scattering , 2014 .

[5]  Ferenc Krausz,et al.  High-repetition-rate picosecond pump laser based on a Yb:YAG disk amplifier for optical parametric amplification. , 2009, Optics letters.

[6]  Huseyin Cankaya,et al.  Cryogenic Yb:YAG composite-thin-disk for high energy and average power amplifiers. , 2015, Optics letters.

[7]  Cory Baumgarten,et al.  1  J, 0.5  kHz repetition rate picosecond laser. , 2016, Optics letters.

[8]  Jorge J. Rocca,et al.  Demonstration of a High Average Power Tabletop Soft X-Ray Laser , 1998 .

[9]  Tso Yee Fan,et al.  Cryogenic Yb 3+ -doped materials for pulsed solid-state laser applications [Invited] , 2011 .

[10]  S. G. Anderson,et al.  Design and operation of a tunable MeV-level Compton-scattering-based γ-ray source , 2010 .

[11]  Razvan Dabu,et al.  Pump energy reduction for a high gain Ag X-ray laser using one long and two short pump pulses. , 2012, Optics letters.

[12]  J A Liddle,et al.  Sub-38 nm resolution tabletop microscopy with 13 nm wavelength laser light. , 2006, Optics letters.

[13]  Junji Kawanaka,et al.  30-mJ, diode-pumped, chirped-pulse Yb:YLF regenerative amplifier. , 2003, Optics letters.

[14]  Alfred Leitenstorfer,et al.  615 fs pulses with 17 mJ energy generated by an Yb:thin-disk amplifier at 3 kHz repetition rate. , 2016, Optics letters.

[15]  F Pedaci,et al.  Microscopy of extreme ultraviolet lithography masks with 13.2 nm tabletop laser illumination. , 2009, Optics letters.

[16]  Tino Eidam,et al.  High-harmonic generation at 250 MHz with photon energies exceeding 100 eV , 2016 .

[17]  B. Schmidt,et al.  Frequency domain optical parametric amplification , 2014, Nature Communications.

[18]  Eric M. Gullikson,et al.  6.7-nm Emission from Gd and Tb Plasmas over a Broad Range of Irradiation Parameters Using a Single Laser , 2016 .

[19]  Zbyněk Hubka,et al.  Thin disk amplifier-based 40 mJ, 1 kHz, picosecond laser at 515 nm. , 2016, Optics express.

[20]  Jorge J. Rocca,et al.  1 Joule, 100 Hz repetition rate, picosecond CPA laser for driving high average power soft x-ray lasers , 2014, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[21]  M. Marconi,et al.  Saturated high-repetition-rate 18.9-nm tabletop laser in nickellike molybdenum. , 2005, Optics letters.

[22]  Benjamin J Eggleton,et al.  High-energy, kHz-repetition-rate, ps cryogenic Yb:YAG chirped-pulse amplifier. , 2010, Optics letters.

[23]  J. Rocca,et al.  Demonstration of a desk-top size high repetition rate soft x-ray laser. , 2005, Optics express.

[24]  Ferenc Krausz,et al.  Third-Generation Femtosecond Technology , 2015, CLEO 2015.

[25]  Ferenc Krausz,et al.  220mJ ultrafast thin-disk regenerative amplifier , 2015, 2015 Conference on Lasers and Electro-Optics (CLEO).

[26]  R Keenan,et al.  High-repetition-rate grazing-incidence pumped x-ray laser operating at 18.9 nm. , 2005, Physical review letters.

[27]  J. Rocca,et al.  High-energy 13.9 nm table-top soft-x-ray laser at 2.5 Hz repetition rate excited by a slab-pumped Ti:sapphire laser. , 2010, Optics letters.

[28]  Judon Stoeldraijer,et al.  EUV lithography performance for manufacturing: status and outlook , 2016, SPIE Advanced Lithography.

[29]  Dinesh Patel,et al.  Demonstration of a 100 Hz repetition rate gain-saturated diode-pumped table-top soft x-ray laser. , 2012, Optics letters.

[30]  Mark Woolston,et al.  Three-dimensional nanoscale molecular imaging by extreme ultraviolet laser ablation mass spectrometry , 2015, Nature Communications.

[31]  Franz X Kärtner,et al.  High-energy, kHz, picosecond hybrid Yb-doped chirped-pulse amplifier. , 2015, Optics express.

[32]  Fuxi Gan,et al.  Dependence of the Yb 3+ emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet , 2003 .

[33]  Jorge J. Rocca,et al.  Efficient Excitation of Gain-Saturated Sub-9-nm-Wavelength Tabletop Soft-X-Ray Lasers and Lasing Down to 7.36 nm , 2011 .

[34]  Ferenc Krausz,et al.  1  kW, 200  mJ picosecond thin-disk laser system. , 2017, Optics letters.

[35]  T. Y. Fan,et al.  Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80–300K temperature range , 2005 .

[36]  M. Murnane,et al.  Bright Coherent Ultrahigh Harmonics in the keV X-ray Regime from Mid-Infrared Femtosecond Lasers , 2012, Science.

[37]  Yong Wang,et al.  Relativistic plasma nanophotonics for ultrahigh energy density physics , 2013, Nature Photonics.

[38]  W Li,et al.  Invited Article: Progress in coherent lithography using table-top extreme ultraviolet lasers. , 2015, The Review of scientific instruments.

[39]  Patrick Georges,et al.  Broadband high-energy diode-pumped Yb:KYW multipass amplifier. , 2011, Optics letters.

[40]  Jorge J. Rocca,et al.  Demonstration of high-repetition-rate tabletop soft-x-ray lasers with saturated output at wavelengths down to 13.9 nm and gain down to 10.9 nm , 2005 .

[41]  Jorge J. Rocca,et al.  Hour-long continuous operation of a tabletop soft x-ray laser at 50-100 Hz repetition rate. , 2013, Optics express.

[42]  D. Ros,et al.  Optimization of a tabletop high-repetition-rate soft x-ray laser pumped in double-pulse single-beam grazing incidence. , 2010, Optics letters.