An existence theorem for the discrete coagulation–fragmentation equations

[1]  M. Ernst,et al.  Nonunique solutions of kinetic equations , 1982 .

[2]  Michael Aizenman,et al.  Convergence to equilibrium in a system of reacting polymers , 1979 .

[3]  J. B. McLeod,et al.  ON AN INFINITE SET OF NON-LINEAR DIFFERENTIAL EQUATIONS , 1962 .

[4]  John D. Barrow Coagulation with fragmentation , 1981 .

[5]  Z. A. Melzak A scalar transport equation , 1957 .

[6]  Warren H. White,et al.  A global existence theorem for Smoluchowski’s coagulation equations , 1980 .

[7]  F. Leyvraz,et al.  Singularities in the kinetics of coagulation processes , 1981 .

[8]  A. Perelson,et al.  Kinetics of rouleau formation. I. A mass action approach with geometric features. , 1982, Biophysical journal.

[9]  F. Leyvraz,et al.  Large-time behavior of the Smoluchowski equations of coagulation , 1984 .

[10]  Z. A. Melzak A scalar transport equation. II. , 1957 .

[11]  John L. Spouge,et al.  A branching-process solution of the polydisperse coagulation equation , 1984, Advances in Applied Probability.

[12]  J. McLeod On the Scalar Transport Equation , 1964 .

[13]  Robert M. Ziff,et al.  Kinetics of polymerization , 1980 .

[14]  J. McLeod,et al.  ON A RECURRENCE FORMULA IN DIFFERENTIAL EQUATIONS , 1962 .

[15]  Robert M. Ziff,et al.  Coagulation equations with gelation , 1983 .

[16]  J. Spouge Solutions and critical times for the polydisperse coagulation equation when a(x,y)=A+B(x+y)+Cxy , 1983 .

[17]  A. A Lushnikov,et al.  Evolution of coagulating systems , 1973 .