[H(OXeF2)n][AsF6] and [FXe(II)(OXe(IV)F2)n][AsF6] (n = 1, 2): examples of xenon(IV) hydroxide fluoride and oxide fluoride cations and the crystal structures of [F3Xe---FH][Sb2F11] and [H5F4][SbF6]·2[F3Xe---FH][Sb2F11].

The xenon(IV) hydroxide fluoride and oxide fluoride salts, [H(OXeF2)n][AsF6] and [FXe(II)(OXe(IV)F2)n][AsF6] (n = 1, 2), have been synthesized as the natural abundance and the (18)O- and (2)H-enriched salts and structurally characterized by low-temperature Raman spectroscopy. Quantum-chemical calculations have been used to arrive at vibrational assignments. The experimental vibrational frequencies and isotopic shift trends are reproduced by the calculated gas-phase frequencies at several levels of theory. The cation chain is limited to one or two OXeF2 subunits, which are oxygen-bridged and strongly ion-paired with the AsF6(-) anion. The reaction of XeOF2·xHF with a superacidic HF/SbF5 solvent mixture yielded crystals of [H5F4][SbF6]·2[XeF3·HF][Sb2F11], [XeF3·HF][Sb2F11], and [XeF3][SbF6]. The XeF3(+) cations of each salt are very similar, displaying T-shaped primary coordination of xenon to three fluorine atoms (AX3E2 VSEPR arrangement) and a secondary contact to the fluorine atom of HF in [H5F4][SbF6]·2[XeF3·HF][Sb2F11] and [XeF3·HF][Sb2F11] or to a fluorine atom of SbF6(-) in [XeF3][SbF6]. The secondary coordination spheres of xenon in [H5F4][SbF6]·2[XeF3·HF][Sb2F11] and [XeF3·HF][Sb2F11] are similar; however, the F3Xe---FH(+) cation of the latter salt is disordered. An additional contact between the XeF3(+) cation and the SbF6(-) anion in [H5F4][SbF6]·2[XeF3·HF][Sb2F11] presumably alters the crystal packing sufficiently to give an ordered F3Xe---FH(+) cation, a rare example in which HF is coordinated to a noble gas. The latter compound also provides the first documentation of the H5F4(+) acidium ion, which forms a zigzag F4-chain terminated by SbF6(-) anions. Enthalpies and Gibbs free energies of reaction obtained from Born-Fajans-Haber thermochemical cycles support the proposed decomposition pathways.

[1]  H. A. Levy,et al.  Xenon Tetrafluoride Molecule and Its Thermal Motion: A Neutron Diffraction Study , 1963, Science.

[2]  S. M. Williamson,et al.  Xenon Tetrafluoride: Reaction with Aqueous Solutions , 1963, Science.

[3]  G. Begun Noble-Gas Compounds , 1964 .

[4]  A. Bondi van der Waals Volumes and Radii , 1964 .

[5]  J. Malm,et al.  Hydrolysis of Xenon Hexafluoride and the Aqueous Solution Chemistry of Xenon , 1964 .

[6]  H. H. Claassen,et al.  RAMAN SPECTRUM OF XENIC ACID , 1964 .

[7]  B. Jaselskis Sodium Perxenate and Xenon (II) Difluoride Reduction at the Dropping-Mercury Electrode , 1964, Science.

[8]  J. Holloway Explosion hazards with xenon trioxide solutions ("xenic acid/rd). , 1967, Talanta.

[9]  R. Margraff,et al.  Sur le comportement électrophorétique et chromatographique de l'acide xénique , 1967 .

[10]  R. Gillespie,et al.  Trifluoroxenon(IV)µ-fluoro-bispentafluoroantimonate(V): the XeF3+ cation , 1971 .

[11]  H. H. Claassen,et al.  Structure of octavalent xenon in aqueous solution , 1971 .

[12]  D. Humphreys,et al.  Hydrogen fluoride solvent system. Part III. Solutions of the acids SbF5, AsF5, and PF5. Evidence for the As2F11– ion , 1971 .

[13]  N. Bartlett,et al.  Crystal structure of [XeF3+] [Sb2F11-] , 1972 .

[14]  R. Gillespie,et al.  Raman spectra of some xenon(II) compounds1 , 1973 .

[15]  N. Bartlett,et al.  Preparation and Raman spectra of the salts [XeF3+][SbF6-], [XeF3+][Sb2F11-], [XeOF3+][SbF6-] and [XeOF3+][Sb2F11-] , 1973 .

[16]  N. Bartlett,et al.  Crystal structures of [trifluorodixenon(1+)][hexafluoroarsenate(1-)] and [pentafluorozenon (1+)][hexafluoroarsenate(1-)] , 1974 .

[17]  R. Gillespie,et al.  Crystal structure of trifluoroxenon(1+) hexafluoroantimonate(1-) , 1974 .

[18]  N. Bartlett,et al.  Crystal structure of .mu.-fluorodecafluorodixenon(1+) hexafluoroaurate(1-) and the Raman spectrum of .mu.-fluorodecafluorodixenon(1+) , 1974 .

[19]  R. Gillespie,et al.  Trifluoroxenon(1+), trifluorooxoxenon(1+0), and fluorodioxoxenon(1+) cations. Preparation and characterization by fluorine-19 nuclear magnetic resonance spectroscopy , 1974 .

[20]  K. Christe,et al.  Novel onium salts. Synthesis and characterization of oxonium hexafluoroantimonate (OH3+SbF6-) and oxonium hexafluoroarsenate (OH3+AsF6-) , 1975 .

[21]  R. Gillespie,et al.  Raman spectral studies of .alpha.- and .beta.-trifluoroxenon hexafluoroantimonates, trifluoroxenon(1+) undecafluorodiantimonate(1-), trifluoroxenon(1+) hexafluoroarsenate(1-), trifluorooxoxenon(1+) hexafluoroantimonate(1-) and undecafluorodiantimonate(1-), and fluorodioxoxenon(1+) undecafluorodianti , 1976 .

[22]  R. Gillespie,et al.  Preparation and Raman spectra of XeOF2, XeOF3–, and XeO2F3– , 1977 .

[23]  J. Holloway,et al.  Xenon-129 pulse Fourier-transform nuclear magnetic resonance spectroscopy , 1978 .

[24]  G. Schrobilgen,et al.  XeOF5– and [(XeOF4)3F]– anions , 1980 .

[25]  T. Mallouk,et al.  The fluorobasicities of ReF7 and IF7 as measured by the enthalpy change ΔH°(EF7(g) → EF6+(g) + F−(g)) , 1984 .

[26]  J. Holloway,et al.  Crystal structure of Cs+[(XeOF4)3F]- and vibrational study of the oxygen-18-enriched [XeOF5]- and [(XeOF4)3F]- anions , 1985 .

[27]  A. Jesih,et al.  Phases in the system XeF2/XeF5AsF6 and structural and vibrational evidence for the following ionization pathway: XeF2 .fwdarw. XeF+ + F- , 1987 .

[28]  G. Schrobilgen The fluoro(perfluoroalkylnitrile)noble-gas(II) cations, RFCN–NgF+(Ng = Kr or Xe; RF= CF3, C2F5, n-C3F7), and the fluoro(trifluoro-s-triazine)xenon(II) cation, s-C3F3N2N–XeF+; novel noble gas–nitrogen bonds , 1988 .

[29]  E. Appelman,et al.  Protolytic properties of perxenic acid , 1988 .

[30]  D. Mootz,et al.  The Fluoronium Ions H2F⊕ and H3F⊕2: Characterization by Crystal Structure Analysis , 1988 .

[31]  D. Mootz,et al.  Zur Kristallchemie von Supersäuren: Bildung und Struktur der tiefschmelzenden Addukte SbF5 · CF3SO3H und SbF5 · 7 HF [1] / Crystal Chemistry of Superacids: Formation and Structure of the Low-Melting Adducts SbF5 · CF3SO3H and SbF5 · 7 HF [1] , 1991 .

[32]  Gary J. Schrobilgen,et al.  The fluoro(hydrogen cyanide)xenon(II) cation. Preparation of HC.tplbond.NXeF+AsF6-: a multinuclear magnetic resonance and Raman spectroscopic study , 1992 .

[33]  G. Schrobilgen,et al.  FxXe(OTeF5)3-x+, O:XeFx(OTeF5)3-x+ (x = 0-2), and O2XeOTeF5+ cations: their preparation and characterization in solution by xenon-129 and fluorine-19 NMR spectroscopy , 1992 .

[34]  D. Dixon,et al.  The Osmium(VIII) Oxofluoro Cations OsO2F3+ and F(cis-OsO2F3)2+: Syntheses, Characterization by 19F NMR Spectroscopy and Raman Spectroscopy, X-ray Crystal Structure of F(cis-OsO2F3)2+Sb2F11-, and Density Functional Theory Calculations of OsO2F3+, ReO2F3, and F(cis-OsO2F3)2+ † , 1996 .

[35]  Leslie Glasser,et al.  Relationships among Ionic Lattice Energies, Molecular (Formula Unit) Volumes, and Thermochemical Radii. , 1999, Inorganic chemistry.

[36]  Frohn,et al.  The First Organoxenon(IV) Compound: Pentafluorophenyldifluoroxenonium(IV) Tetrafluoroborate. , 2000, Angewandte Chemie.

[37]  M. Gerken The impact of multi-NMR spectroscopy on the development of noble-gas chemistry , 2000 .

[38]  D. Dixon,et al.  An X-ray crystallographic study of [Xe2F3][SbF6] and dimorphism in [Xe2F3][AsF6]; and a density functional theory study of the Xe2F3+ cation , 2000 .

[39]  D. Dixon,et al.  The OsO4F-, OsO4F2(2)-, and OsO3F3- anions, their study by vibrational and NMR spectroscopy and density functional theory calculations, and the X-ray crystal structures of [N(CH3)4][OsO4F] and [N(CH3)4][OsO3F3]. , 2000, Inorganic chemistry.

[40]  L. Glasser,et al.  Lattice potential energy estimation for complex ionic salts from density measurements. , 2002, Inorganic chemistry.

[41]  Anthony L. Spek,et al.  Journal of , 1993 .

[42]  G. Schrobilgen,et al.  A laboratory-scale synthesis of high-purity AsF5 by direct fluorination of AsF3 , 2005 .

[43]  B. Žemva,et al.  Synthesis of novel salts with HF, AsF3 and XeF2 as ligands to metal cations , 2006 .

[44]  K. Seppelt,et al.  The structure of xenon hexafluoride in the solid state , 2006 .

[45]  R. Suontamo,et al.  Syntheses and X-ray crystal structures of alpha- and beta-[XeO2F][SbF6], [XeO2F][AsF6], [FO2XeFXeO2F][AsF6], and [XeF5][SbF6)].XeOF4 and computational studies of the XeO2F+ and FO2XeFXeO2F+ cations and related species. , 2006, Inorganic chemistry.

[46]  G. Schrobilgen,et al.  XeOF2, F2OXeN≡CCH3, and XeOF2·nHF: Rare Examples of Xe(IV) Oxide Fluorides , 2007 .

[47]  G. Scuseria,et al.  Gaussian 03, Revision E.01. , 2007 .

[48]  Gary J. Schrobilgen,et al.  Synthesis of [F3S≡NXeF][AsF6] and structural study by multi-NMR and raman spectroscopy, electronic structure calculations, and X-ray crystallography , 2007 .

[49]  B. Anand,et al.  Vibrational spectra and assignments of 3-aminobenzyl alcohol by ab initio Hartree-Fock and density functional method. , 2008, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[50]  B. Žemva,et al.  XeF4 as a ligand for a metal ion. , 2009, Angewandte Chemie.

[51]  J. Boatz,et al.  On the XeF+/H2O system: synthesis and characterization of the xenon(II) oxide fluoride cation, FXeOXeFXeF+. , 2009, Journal of the American Chemical Society.

[52]  B. Silvi,et al.  XeF(2) coordination to a halogen center; Raman spectra (n = 1, 2) and X-ray crystal structures (n = 2) of [BrOF(2)][AsF(6)].nXeF(2) and [XOF(2)][AsF(6)] (X = Cl, Br). , 2010, Inorganic chemistry.

[53]  B. Silvi,et al.  A rare example of a krypton difluoride coordination compound: [BrOF2][AsF6] x 2 KrF2. , 2010, Journal of the American Chemical Society.

[54]  G. Schrobilgen,et al.  XeOF3(-), an example of an AX3YE2 valence shell electron pair repulsion arrangement; syntheses and structural characterizations of [M][XeOF3] (M = Cs, N(CH3)4). , 2010, Journal of the American Chemical Society.

[55]  G. Schrobilgen,et al.  X-ray crystal structures of [XeF][MF6] (M = As, Sb, Bi), [XeF][M2F11] (M = Sb, Bi) and estimated thermochemical data and predicted stabilities for noble-gas fluorocation salts using volume-based thermodynamics. , 2010, Inorganic chemistry.