Rubidium and Potassium Isotopic Variations in Chondrites and Mars: Accretion Signatures and Planetary Overprints

[1]  F. Huang,et al.  Rubidium isotope compositions of the average upper continental crust and the Himalayan leucogranites: implications for magmatic-fluid interaction , 2022, Geochimica et Cosmochimica Acta.

[2]  T. Kleine,et al.  Nucleosynthetic zinc isotope anomalies reveal a dual origin of terrestrial volatiles , 2022, Icarus.

[3]  F. Moynier,et al.  Zinc isotope anomalies in primitive meteorites identify the outer solar system as an important source of Earth's volatile inventory , 2022, Icarus.

[4]  F. Teng,et al.  High-precision potassium isotope analysis using the Nu Sapphire collision cell (CC)-MC-ICP-MS , 2022, Science China Earth Sciences.

[5]  Zixiao Guo,et al.  Multi-mode chemical exchange in seafloor alteration revealed by lithium and potassium isotopes , 2022, Chemical Geology.

[6]  V. Busigny,et al.  Evidence from HP/UHP metasediments for recycling of isotopically heterogeneous potassium into the mantle , 2022, American Mineralogist.

[7]  R. Canup,et al.  The Extent, Nature, and Origin of K and Rb Depletions and Isotopic Fractionations in Earth, the Moon, and Other Planetary Bodies , 2022, The Planetary Science Journal.

[8]  A. Morbidelli,et al.  Terrestrial planet formation from lost inner solar system material , 2021, Science advances.

[9]  A. Shahar,et al.  Imprint of chondrule formation on the K and Rb isotopic compositions of carbonaceous meteorites , 2021, Science advances.

[10]  O. Chadwick,et al.  Potassium isotopic fractionation in a humid and an arid soil–plant system in Hawai‘i , 2021 .

[11]  S. Jacobsen,et al.  High-temperature inter-mineral potassium isotope fractionation: implications for K-Ca-Ar chronology. , 2021, ACS earth & space chemistry.

[12]  M. Trieloff,et al.  Evolution of the parent body of enstatite (EL) chondrites , 2021, Icarus.

[13]  A. Brearley,et al.  Plagioclase alteration and equilibration in ordinary chondrites: Metasomatism during thermal metamorphism , 2021, Geochimica et Cosmochimica Acta.

[14]  K. Lodders,et al.  Potassium isotope composition of Mars reveals a mechanism of planetary volatile retention , 2021, Proceedings of the National Academy of Sciences.

[15]  H. Becker,et al.  Tellurium isotope cosmochemistry: Implications for volatile fractionation in chondrite parent bodies and origin of the late veneer , 2021 .

[16]  D. Prelević,et al.  Potassium isotope evidence for sediment recycling into the orogenic lithospheric mantle , 2021, Geochemical Perspectives Letters.

[17]  Kun Wang,et al.  Contributions of slab-derived fluids to ultrapotassic rocks indicated by K isotopes , 2021 .

[18]  R. Skála,et al.  Potassium elemental and isotope constraints on the formation of tektites and element loss during impacts , 2021 .

[19]  Yan Hu,et al.  Potassium isotopic fractionation during clay adsorption , 2021, Geochimica et Cosmochimica Acta.

[20]  F. Moynier,et al.  Potassium isotopic composition of various samples using a dual-path collision cell-capable multiple-collector inductively coupled plasma mass spectrometer, Nu instruments Sapphire , 2021 .

[21]  Shilei Li,et al.  Geochemistry and Cosmochemistry of Potassium Stable Isotopes. , 2021, Chemie der Erde : Beitrage zur chemischen Mineralogie, Petrographie und Geologie.

[22]  E. Alp,et al.  Loss and Isotopic Fractionation of Alkali Elements during Diffusion-Limited Evaporation from Molten Silicate: Theory and Experiments , 2021, ACS Earth and Space Chemistry.

[23]  R. T. Helz,et al.  Potassium Isotope Fractionation During Magmatic Differentiation and the Composition of the Mantle , 2021, Journal of Geophysical Research: Solid Earth.

[24]  Yan Hu,et al.  Potassium isotopic evidence for sedimentary input to the mantle source of Lesser Antilles lavas , 2021, Geochimica et Cosmochimica Acta.

[25]  J. Hu,et al.  A Condensation Origin of Potassium and Rubidium Isotopic Variations in Carbonaceous Chondrites , 2021 .

[26]  Kun Wang,et al.  Potassium Isotopic Composition of Low-Temperature Altered Oceanic Crust and its Impact on the Global K Cycle , 2021, Goldschmidt Abstracts.

[27]  T. Plank,et al.  Potassium isotopic heterogeneity in subducting oceanic plates , 2020, Science Advances.

[28]  F. Huang,et al.  Early solar system aqueous activity: K isotope evidence from Allende , 2020, Meteoritics & Planetary Science.

[29]  T. Kleine,et al.  Origin of volatile element depletion among carbonaceous chondrites , 2020, Earth and Planetary Science Letters.

[30]  S. Jacobsen,et al.  Potassium isotope anomalies in meteorites inherited from the protosolar molecular cloud , 2020, Science Advances.

[31]  W. Bottke,et al.  Meteorite evidence for partial differentiation and protracted accretion of planetesimals , 2020, Science Advances.

[32]  R. Korotev,et al.  Potassium isotopic composition of the Moon , 2020 .

[33]  R. Rudnick,et al.  Heterogeneous potassium isotopic composition of the upper continental crust , 2020, Geochimica et Cosmochimica Acta.

[34]  Yan Hu,et al.  Tracing subducted oceanic slabs in the mantle by using potassium isotopes , 2020, Geochimica et Cosmochimica Acta.

[35]  Yilin Xiao,et al.  Extremely light K in subducted low-T altered oceanic crust: Implications for K recycling in subduction zone , 2020 .

[36]  Usa,et al.  The composition of Mars , 2019, Geochimica et Cosmochimica Acta.

[37]  Tian-Yi Huang,et al.  Homogeneous and heavy potassium isotopic composition of global oceans. , 2019, Science bulletin.

[38]  Shichun Huang,et al.  First-principles investigation of equilibrium K isotope fractionation among K-bearing minerals , 2019, Geochimica et Cosmochimica Acta.

[39]  N. Dauphas,et al.  Vapor Drainage in the Protolunar Disk as the Cause for the Depletion in Volatile Elements of the Moon , 2019, The Astrophysical Journal.

[40]  G. Galli,et al.  Ab Initio Calculation of Equilibrium Isotopic Fractionations of Potassium and Rubidium in Minerals and Water , 2019, ACS Earth and Space Chemistry.

[41]  B. Fegley,et al.  Potassium isotopic compositions of howardite-eucrite-diogenite meteorites , 2019 .

[42]  Katherine A. Kelley,et al.  Potassium isotope systematics of oceanic basalts , 2019, Geochimica et Cosmochimica Acta.

[43]  K. Lodders,et al.  Potassium isotopic compositions of enstatite meteorites , 2019, Meteoritics & Planetary Science.

[44]  M. Trieloff,et al.  Thermal history modelling of the L chondrite parent body , 2019, Astronomy & Astrophysics.

[45]  F. Moynier,et al.  Evaporation of moderately volatile elements from silicate melts: experiments and theory , 2019, Geochimica et Cosmochimica Acta.

[46]  N. Braukmüller,et al.  Earth’s volatile element depletion pattern inherited from a carbonaceous chondrite-like source , 2019, Nature Geoscience.

[47]  B. Wood,et al.  The condensation temperatures of the elements: A reappraisal , 2019, American Mineralogist.

[48]  R. Sletten,et al.  Potassium isotopic compositions of international geological reference materials , 2019, Chemical Geology.

[49]  M. Raymo,et al.  K isotopes as a tracer for continental weathering and geological K cycling , 2019, Proceedings of the National Academy of Sciences.

[50]  Shichun Huang,et al.  First-principles investigation of the concentration effect on equilibrium fractionation of K isotopes in feldspars , 2019, Geochimica et Cosmochimica Acta.

[51]  R. Korotev,et al.  High-precision potassium isotopic analysis by MC-ICP-MS: an inter-laboratory comparison and refined K atomic weight , 2019, Journal of Analytical Atomic Spectrometry.

[52]  R. Wieler,et al.  Brecciation among 2280 ordinary chondrites – Constraints on the evolution of their parent bodies , 2018, Geochimica et Cosmochimica Acta.

[53]  L. Morgan,et al.  Reverse weathering in marine sediments and the geochemical cycle of potassium in seawater: Insights from the K isotopic composition (41K/39K) of deep-sea pore-fluids , 2018, Geochimica et Cosmochimica Acta.

[54]  Yan Hu,et al.  High-precision analysis of potassium isotopes by HR-MC-ICPMS , 2018, Chemical Geology.

[55]  S. Mojzsis,et al.  Jupiter's Influence on the Building Blocks of Mars and Earth , 2018, Geophysical Research Letters.

[56]  K. Lodders,et al.  Potassium isotope compositions of carbonaceous and ordinary chondrites: Implications on the origin of volatile depletion in the early solar system , 2018, 2003.10545.

[57]  Jinlong Ma,et al.  Rubidium purification via a single chemical column and its isotope measurement on geological standard materials by MC-ICP-MS , 2018 .

[58]  R. Ellam,et al.  High-precision 41K/39K measurements by MC-ICP-MS indicate terrestrial variability of δ41K , 2018 .

[59]  I. Parkinson,et al.  Tellurium stable isotope fractionation in chondritic meteorites and some terrestrial samples , 2018 .

[60]  F. Moynier,et al.  Rubidium isotopic composition of the Earth, meteorites, and the Moon: Evidence for the origin of volatile loss during planetary accretion , 2017 .

[61]  S. Jacobsen,et al.  K isotopes as a tracer of seafloor hydrothermal alteration , 2017, Proceedings of the National Academy of Sciences.

[62]  N. Dauphas The isotopic nature of the Earth’s accreting material through time , 2017, Nature.

[63]  L. Nyquist,et al.  Extreme early solar system chemical fractionation recorded by alkali-rich clasts contained in ordinary chondrite breccias , 2017 .

[64]  J. Watkins,et al.  Non-Traditional Stable Isotopes: Retrospective and Prospective , 2017 .

[65]  S. Jacobsen,et al.  Potassium isotopic evidence for a high-energy giant impact origin of the Moon , 2016, Nature.

[66]  D. Ebel,et al.  Relationships among physical properties as indicators of high temperature deformation or post-shock thermal annealing in ordinary chondrites , 2016 .

[67]  N. Dauphas,et al.  Mass Fractionation Laws, Mass-Independent Effects, and Isotopic Anomalies , 2016 .

[68]  S. Jacobsen,et al.  An estimate of the Bulk Silicate Earth potassium isotopic composition based on MC-ICPMS measurements of basalts , 2016 .

[69]  B. Bourdon,et al.  The building blocks of Earth and Mars: A close genetic link , 2016 .

[70]  F. Poitrasson,et al.  Planetary and meteoritic Mg/Si and δ30Si variations inherited from solar nebula chemistry , 2015, 1507.02922.

[71]  A. Pourmand,et al.  Thulium anomalies and rare earth element patterns in meteorites and Earth: Nebular fractionation and the nugget effect , 2015, 1503.08708.

[72]  A. Rubin Impact features of enstatite-rich meteorites , 2015 .

[73]  H. McSween,et al.  Petrology and trace element geochemistry of Tissint, the newest shergottite fall , 2015 .

[74]  N. Dauphas,et al.  60Fe–60Ni chronology of core formation in Mars , 2014, 1401.1830.

[75]  R. Rudnick,et al.  Composition of the Continental Crust , 2014 .

[76]  D. Baratoux,et al.  Thermal history of the H-chondrite parent body: Implications for metamorphic grade and accretionary time-scales , 2013 .

[77]  J. Weirich,et al.  Source of potassium in shocked ordinary chondrites , 2012 .

[78]  R. Paniello,et al.  Zinc isotopic evidence for the origin of the Moon , 2012, Nature.

[79]  M. Trieloff,et al.  Thermal history modelling of the L chondrite parent body , 2019, Astronomy & Astrophysics.

[80]  F. Richter,et al.  Laboratory experiments bearing on the origin and evolution of olivine‐rich chondrules , 2011 .

[81]  W. Westrenen,et al.  Rubidium isotopes in primitive chondrites: Constraints on Earth's volatile element depletion and lead isotope evolution , 2011 .

[82]  Roger Powell,et al.  An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids , 2011 .

[83]  R. Paniello,et al.  Nature of volatile depletion and genetic relationships in enstatite chondrites and aubrites inferred from Zn isotopes , 2011 .

[84]  K. Harrison,et al.  Thermal constraints on the early history of the H-chondrite parent body reconsidered , 2010 .

[85]  R. Dohmen,et al.  Diffusion in Polycrystalline Materials: Grain Boundaries, Mathematical Models, and Experimental Data , 2010 .

[86]  Youxue Zhang Diffusion in Minerals and Melts: Theoretical Background , 2010 .

[87]  Linda T. Elkins-Tanton,et al.  Chondrites as samples of differentiated planetesimals , 2009 .

[88]  F. Richter,et al.  Non-traditional fractionation of non-traditional isotopes: Evaporation, chemical diffusion and Soret diffusion , 2009 .

[89]  J. Masarik,et al.  Rapid accretion and differentiation of iron meteorite parent bodies inferred from 182Hf–182W chronometry and thermal modeling , 2008 .

[90]  M. Rehkämper,et al.  Cadmium stable isotope cosmochemistry , 2008 .

[91]  Francis Albarède,et al.  Comparative stable isotope geochemistry of Ni, Cu, Zn, and Fe in chondrites and iron meteorites , 2007 .

[92]  W. McDonough,et al.  Diffusion-driven extreme lithium isotopic fractionation in country rocks of the Tin Mountain pegmatite , 2006 .

[93]  I. Sanders,et al.  A model for planetesimal meltdown by 26Al and its implications for meteorite parent bodies , 2006 .

[94]  A. Davis Volatile Evolution and Loss , 2006 .

[95]  J. Luck,et al.  Zn and Cu isotopic variations in chondrites and iron meteorites: Early solar nebula reservoirs and parent-body processes , 2005 .

[96]  S. Taylor,et al.  Isotopic fractionation of iron, potassium, and oxygen in stony cosmic spherules; implications for heating histories and sources , 2005 .

[97]  H. McSween,et al.  Peak metamorphic temperatures in type 6 ordinary chondrites: An evaluation of pyroxene and plagioclase geothermometry , 2005 .

[98]  J. Grossman,et al.  Alkali elemental and potassium isotopic compositions of Semarkona chondrules , 2005 .

[99]  C. Koeberl,et al.  Potassium isotopic composition of Australasian tektites , 2004 .

[100]  J. Bridges,et al.  Chemical studies of L chondrites. VI: variations with petrographic type and shock-loading among equilibrated falls 1 1 Associate editor: G. Herzog , 2004 .

[101]  E. Watson,et al.  Isotope fractionation by chemical diffusion between molten basalt and rhyolite , 2003 .

[102]  K. Lodders Solar System Abundances and Condensation Temperatures of the Elements , 2003 .

[103]  D. Porcelli,et al.  In search of lost planets – the paleocosmochemistry of the inner solar system , 2001 .

[104]  G. Wasserburg,et al.  Aluminum‐26 in calcium‐aluminum‐rich inclusions and chondrules from unequilibrated ordinary chondrites , 2001 .

[105]  M. Bourot‐Denise,et al.  The lack of potassium‐isotopic fractionation in Bishunpur chondrules , 2000 .

[106]  A. Brearley,et al.  Bleached chondrules: Evidence for widespread aqueous processes on the parent asteroids of ordinary chondrites , 2000 .

[107]  A. Rubin Petrologic, geochemical and experimental constraints on models of chondrule formation , 2000 .

[108]  A. Jambon,et al.  A simple chondritic model of Mars , 1999 .

[109]  M. Kimura,et al.  Hydrous and anhydrous alterations of chondrules in Kaba and Mokoia CV chondrites , 1998 .

[110]  K. Hashizume,et al.  Transportation of gaseous elements and isotopes in a thermally evolving chondritic planetesimal , 1998 .

[111]  Gerald J. Wasserburg,et al.  Mg diffusion in anorthite: implications for the formation of early solar system planetesimals , 1998 .

[112]  B. J. Giletti,et al.  Alkali diffusion in plagioclase feldspar , 1997 .

[113]  B. Fegley,et al.  An Oxygen Isotope Model for the Composition of Mars , 1997 .

[114]  E. Scott,et al.  Shock metamorphism of enstatite chondrites , 1997 .

[115]  H. McSween,et al.  Revised model calculations for the thermal histories of ordinary chondrite parent bodies , 1996 .

[116]  G. Wasserburg,et al.  Evidence for Widespread 26Al in the Solar Nebula and Constraints for Nebula Time Scales , 1996, Science.

[117]  R. Yund,et al.  Interphase boundary diffusion of oxygen and potassium in K-feldspar/quartz aggregates , 1995 .

[118]  R. Clayton,et al.  Precise determination of the isotopic composition of potassium: Application to terrestrial rocks and lunar soils , 1995 .

[119]  R. Clayton,et al.  Potassium isotope cosmochemistry: Genetic implications of volatile element depletion , 1995 .

[120]  R. Yund,et al.  Grain boundary diffusion of oxygen, potassium and calcium in natural and hot-pressed feldspar aggregates , 1995 .

[121]  R. Clayton Oxygen Isotopes in Meteorites , 2003 .

[122]  E. Horwitz,et al.  A NOVEL STRONTIUM-SELECTIVE EXTRACTION CHROMATOGRAPHIC RESIN* , 1992 .

[123]  D. Britt,et al.  Black ordinary chondrites - An analysis of abundance and fall frequency , 1991 .

[124]  K. Keil,et al.  Shock metamorphism of ordinary chondrites , 1991 .

[125]  J. Wasson,et al.  Compositions of chondrites , 1988, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[126]  R. Berman,et al.  Internally consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-F , 1988 .

[127]  J. Arkani‐Hamed,et al.  Possible transport of volatile trace elements in meteorite parent bodies , 1987 .

[128]  J. Arkani‐Hamed,et al.  Possible transport of carbon in meteorite parent bodies , 1986 .

[129]  M. Ghiorso Activity/composition relations in the ternary feldspars , 1984 .

[130]  Motoaki Sato,et al.  Intrinsic oxygen fugacity measurements on seven chondrites, a pallasite, and a tektite and the redox state of meteorite parent bodies , 1984 .

[131]  H. Wänke,et al.  Alkali differentiation in LL-chondrites , 1983 .

[132]  D. Sears,et al.  The compositional classification of chondrites: II The enstatite chondrite groups , 1982 .

[133]  N. Fujii,et al.  Ordinary chondrite parent body - An internal heating model , 1982 .

[134]  D. Bogard,et al.  Ar-40/Ar-39 dating, Ar diffusion properties, and cooling rate determinations of severely shocked chondrites , 1980 .

[135]  J. Minster,et al.  87Rb-87Sr chronology of enstatite meteorites , 1979 .

[136]  J. Minster,et al.  87Rb-87Sr Dating of L Chondrites: Effects of Shock and Brecciation , 1979 .

[137]  R. Wright,et al.  40Ar‐39Ar dating of collisional events in chondrite parent bodies , 1976 .

[138]  P. Buseck,et al.  Equilibration temperatures in enstatite chondrites , 1974 .

[139]  B. Wood,et al.  Garnet-orthopyroxene and orthopyroxene-clinopyroxene relationships in simple and complex systems , 1973 .

[140]  R. T. Dodd Metamorphism of the ordinary chondrites: A review , 1969 .

[141]  John A. S. Adams,et al.  The geochemistry of the alkali metals , 1964 .