Rubidium and Potassium Isotopic Variations in Chondrites and Mars: Accretion Signatures and Planetary Overprints
暂无分享,去创建一个
A. Shahar | N. Dauphas | F. Teng | Xin-Yang Chen | N. Nie | Justin Y. Hu | Zhe J. Zhang | Weiyi Liu | Francois L. H. Tissot | François L. H. Tissot
[1] F. Huang,et al. Rubidium isotope compositions of the average upper continental crust and the Himalayan leucogranites: implications for magmatic-fluid interaction , 2022, Geochimica et Cosmochimica Acta.
[2] T. Kleine,et al. Nucleosynthetic zinc isotope anomalies reveal a dual origin of terrestrial volatiles , 2022, Icarus.
[3] F. Moynier,et al. Zinc isotope anomalies in primitive meteorites identify the outer solar system as an important source of Earth's volatile inventory , 2022, Icarus.
[4] F. Teng,et al. High-precision potassium isotope analysis using the Nu Sapphire collision cell (CC)-MC-ICP-MS , 2022, Science China Earth Sciences.
[5] Zixiao Guo,et al. Multi-mode chemical exchange in seafloor alteration revealed by lithium and potassium isotopes , 2022, Chemical Geology.
[6] V. Busigny,et al. Evidence from HP/UHP metasediments for recycling of isotopically heterogeneous potassium into the mantle , 2022, American Mineralogist.
[7] R. Canup,et al. The Extent, Nature, and Origin of K and Rb Depletions and Isotopic Fractionations in Earth, the Moon, and Other Planetary Bodies , 2022, The Planetary Science Journal.
[8] A. Morbidelli,et al. Terrestrial planet formation from lost inner solar system material , 2021, Science advances.
[9] A. Shahar,et al. Imprint of chondrule formation on the K and Rb isotopic compositions of carbonaceous meteorites , 2021, Science advances.
[10] O. Chadwick,et al. Potassium isotopic fractionation in a humid and an arid soil–plant system in Hawai‘i , 2021 .
[11] S. Jacobsen,et al. High-temperature inter-mineral potassium isotope fractionation: implications for K-Ca-Ar chronology. , 2021, ACS earth & space chemistry.
[12] M. Trieloff,et al. Evolution of the parent body of enstatite (EL) chondrites , 2021, Icarus.
[13] A. Brearley,et al. Plagioclase alteration and equilibration in ordinary chondrites: Metasomatism during thermal metamorphism , 2021, Geochimica et Cosmochimica Acta.
[14] K. Lodders,et al. Potassium isotope composition of Mars reveals a mechanism of planetary volatile retention , 2021, Proceedings of the National Academy of Sciences.
[15] H. Becker,et al. Tellurium isotope cosmochemistry: Implications for volatile fractionation in chondrite parent bodies and origin of the late veneer , 2021 .
[16] D. Prelević,et al. Potassium isotope evidence for sediment recycling into the orogenic lithospheric mantle , 2021, Geochemical Perspectives Letters.
[17] Kun Wang,et al. Contributions of slab-derived fluids to ultrapotassic rocks indicated by K isotopes , 2021 .
[18] R. Skála,et al. Potassium elemental and isotope constraints on the formation of tektites and element loss during impacts , 2021 .
[19] Yan Hu,et al. Potassium isotopic fractionation during clay adsorption , 2021, Geochimica et Cosmochimica Acta.
[20] F. Moynier,et al. Potassium isotopic composition of various samples using a dual-path collision cell-capable multiple-collector inductively coupled plasma mass spectrometer, Nu instruments Sapphire , 2021 .
[21] Shilei Li,et al. Geochemistry and Cosmochemistry of Potassium Stable Isotopes. , 2021, Chemie der Erde : Beitrage zur chemischen Mineralogie, Petrographie und Geologie.
[22] E. Alp,et al. Loss and Isotopic Fractionation of Alkali Elements during Diffusion-Limited Evaporation from Molten Silicate: Theory and Experiments , 2021, ACS Earth and Space Chemistry.
[23] R. T. Helz,et al. Potassium Isotope Fractionation During Magmatic Differentiation and the Composition of the Mantle , 2021, Journal of Geophysical Research: Solid Earth.
[24] Yan Hu,et al. Potassium isotopic evidence for sedimentary input to the mantle source of Lesser Antilles lavas , 2021, Geochimica et Cosmochimica Acta.
[25] J. Hu,et al. A Condensation Origin of Potassium and Rubidium Isotopic Variations in Carbonaceous Chondrites , 2021 .
[26] Kun Wang,et al. Potassium Isotopic Composition of Low-Temperature Altered Oceanic Crust and its Impact on the Global K Cycle , 2021, Goldschmidt Abstracts.
[27] T. Plank,et al. Potassium isotopic heterogeneity in subducting oceanic plates , 2020, Science Advances.
[28] F. Huang,et al. Early solar system aqueous activity: K isotope evidence from Allende , 2020, Meteoritics & Planetary Science.
[29] T. Kleine,et al. Origin of volatile element depletion among carbonaceous chondrites , 2020, Earth and Planetary Science Letters.
[30] S. Jacobsen,et al. Potassium isotope anomalies in meteorites inherited from the protosolar molecular cloud , 2020, Science Advances.
[31] W. Bottke,et al. Meteorite evidence for partial differentiation and protracted accretion of planetesimals , 2020, Science Advances.
[32] R. Korotev,et al. Potassium isotopic composition of the Moon , 2020 .
[33] R. Rudnick,et al. Heterogeneous potassium isotopic composition of the upper continental crust , 2020, Geochimica et Cosmochimica Acta.
[34] Yan Hu,et al. Tracing subducted oceanic slabs in the mantle by using potassium isotopes , 2020, Geochimica et Cosmochimica Acta.
[35] Yilin Xiao,et al. Extremely light K in subducted low-T altered oceanic crust: Implications for K recycling in subduction zone , 2020 .
[36] Usa,et al. The composition of Mars , 2019, Geochimica et Cosmochimica Acta.
[37] Tian-Yi Huang,et al. Homogeneous and heavy potassium isotopic composition of global oceans. , 2019, Science bulletin.
[38] Shichun Huang,et al. First-principles investigation of equilibrium K isotope fractionation among K-bearing minerals , 2019, Geochimica et Cosmochimica Acta.
[39] N. Dauphas,et al. Vapor Drainage in the Protolunar Disk as the Cause for the Depletion in Volatile Elements of the Moon , 2019, The Astrophysical Journal.
[40] G. Galli,et al. Ab Initio Calculation of Equilibrium Isotopic Fractionations of Potassium and Rubidium in Minerals and Water , 2019, ACS Earth and Space Chemistry.
[41] B. Fegley,et al. Potassium isotopic compositions of howardite-eucrite-diogenite meteorites , 2019 .
[42] Katherine A. Kelley,et al. Potassium isotope systematics of oceanic basalts , 2019, Geochimica et Cosmochimica Acta.
[43] K. Lodders,et al. Potassium isotopic compositions of enstatite meteorites , 2019, Meteoritics & Planetary Science.
[44] M. Trieloff,et al. Thermal history modelling of the L chondrite parent body , 2019, Astronomy & Astrophysics.
[45] F. Moynier,et al. Evaporation of moderately volatile elements from silicate melts: experiments and theory , 2019, Geochimica et Cosmochimica Acta.
[46] N. Braukmüller,et al. Earth’s volatile element depletion pattern inherited from a carbonaceous chondrite-like source , 2019, Nature Geoscience.
[47] B. Wood,et al. The condensation temperatures of the elements: A reappraisal , 2019, American Mineralogist.
[48] R. Sletten,et al. Potassium isotopic compositions of international geological reference materials , 2019, Chemical Geology.
[49] M. Raymo,et al. K isotopes as a tracer for continental weathering and geological K cycling , 2019, Proceedings of the National Academy of Sciences.
[50] Shichun Huang,et al. First-principles investigation of the concentration effect on equilibrium fractionation of K isotopes in feldspars , 2019, Geochimica et Cosmochimica Acta.
[51] R. Korotev,et al. High-precision potassium isotopic analysis by MC-ICP-MS: an inter-laboratory comparison and refined K atomic weight , 2019, Journal of Analytical Atomic Spectrometry.
[52] R. Wieler,et al. Brecciation among 2280 ordinary chondrites – Constraints on the evolution of their parent bodies , 2018, Geochimica et Cosmochimica Acta.
[53] L. Morgan,et al. Reverse weathering in marine sediments and the geochemical cycle of potassium in seawater: Insights from the K isotopic composition (41K/39K) of deep-sea pore-fluids , 2018, Geochimica et Cosmochimica Acta.
[54] Yan Hu,et al. High-precision analysis of potassium isotopes by HR-MC-ICPMS , 2018, Chemical Geology.
[55] S. Mojzsis,et al. Jupiter's Influence on the Building Blocks of Mars and Earth , 2018, Geophysical Research Letters.
[56] K. Lodders,et al. Potassium isotope compositions of carbonaceous and ordinary chondrites: Implications on the origin of volatile depletion in the early solar system , 2018, 2003.10545.
[57] Jinlong Ma,et al. Rubidium purification via a single chemical column and its isotope measurement on geological standard materials by MC-ICP-MS , 2018 .
[58] R. Ellam,et al. High-precision 41K/39K measurements by MC-ICP-MS indicate terrestrial variability of δ41K , 2018 .
[59] I. Parkinson,et al. Tellurium stable isotope fractionation in chondritic meteorites and some terrestrial samples , 2018 .
[60] F. Moynier,et al. Rubidium isotopic composition of the Earth, meteorites, and the Moon: Evidence for the origin of volatile loss during planetary accretion , 2017 .
[61] S. Jacobsen,et al. K isotopes as a tracer of seafloor hydrothermal alteration , 2017, Proceedings of the National Academy of Sciences.
[62] N. Dauphas. The isotopic nature of the Earth’s accreting material through time , 2017, Nature.
[63] L. Nyquist,et al. Extreme early solar system chemical fractionation recorded by alkali-rich clasts contained in ordinary chondrite breccias , 2017 .
[64] J. Watkins,et al. Non-Traditional Stable Isotopes: Retrospective and Prospective , 2017 .
[65] S. Jacobsen,et al. Potassium isotopic evidence for a high-energy giant impact origin of the Moon , 2016, Nature.
[66] D. Ebel,et al. Relationships among physical properties as indicators of high temperature deformation or post-shock thermal annealing in ordinary chondrites , 2016 .
[67] N. Dauphas,et al. Mass Fractionation Laws, Mass-Independent Effects, and Isotopic Anomalies , 2016 .
[68] S. Jacobsen,et al. An estimate of the Bulk Silicate Earth potassium isotopic composition based on MC-ICPMS measurements of basalts , 2016 .
[69] B. Bourdon,et al. The building blocks of Earth and Mars: A close genetic link , 2016 .
[70] F. Poitrasson,et al. Planetary and meteoritic Mg/Si and δ30Si variations inherited from solar nebula chemistry , 2015, 1507.02922.
[71] A. Pourmand,et al. Thulium anomalies and rare earth element patterns in meteorites and Earth: Nebular fractionation and the nugget effect , 2015, 1503.08708.
[72] A. Rubin. Impact features of enstatite-rich meteorites , 2015 .
[73] H. McSween,et al. Petrology and trace element geochemistry of Tissint, the newest shergottite fall , 2015 .
[74] N. Dauphas,et al. 60Fe–60Ni chronology of core formation in Mars , 2014, 1401.1830.
[75] R. Rudnick,et al. Composition of the Continental Crust , 2014 .
[76] D. Baratoux,et al. Thermal history of the H-chondrite parent body: Implications for metamorphic grade and accretionary time-scales , 2013 .
[77] J. Weirich,et al. Source of potassium in shocked ordinary chondrites , 2012 .
[78] R. Paniello,et al. Zinc isotopic evidence for the origin of the Moon , 2012, Nature.
[79] M. Trieloff,et al. Thermal history modelling of the L chondrite parent body , 2019, Astronomy & Astrophysics.
[80] F. Richter,et al. Laboratory experiments bearing on the origin and evolution of olivine‐rich chondrules , 2011 .
[81] W. Westrenen,et al. Rubidium isotopes in primitive chondrites: Constraints on Earth's volatile element depletion and lead isotope evolution , 2011 .
[82] Roger Powell,et al. An improved and extended internally consistent thermodynamic dataset for phases of petrological interest, involving a new equation of state for solids , 2011 .
[83] R. Paniello,et al. Nature of volatile depletion and genetic relationships in enstatite chondrites and aubrites inferred from Zn isotopes , 2011 .
[84] K. Harrison,et al. Thermal constraints on the early history of the H-chondrite parent body reconsidered , 2010 .
[85] R. Dohmen,et al. Diffusion in Polycrystalline Materials: Grain Boundaries, Mathematical Models, and Experimental Data , 2010 .
[86] Youxue Zhang. Diffusion in Minerals and Melts: Theoretical Background , 2010 .
[87] Linda T. Elkins-Tanton,et al. Chondrites as samples of differentiated planetesimals , 2009 .
[88] F. Richter,et al. Non-traditional fractionation of non-traditional isotopes: Evaporation, chemical diffusion and Soret diffusion , 2009 .
[89] J. Masarik,et al. Rapid accretion and differentiation of iron meteorite parent bodies inferred from 182Hf–182W chronometry and thermal modeling , 2008 .
[90] M. Rehkämper,et al. Cadmium stable isotope cosmochemistry , 2008 .
[91] Francis Albarède,et al. Comparative stable isotope geochemistry of Ni, Cu, Zn, and Fe in chondrites and iron meteorites , 2007 .
[92] W. McDonough,et al. Diffusion-driven extreme lithium isotopic fractionation in country rocks of the Tin Mountain pegmatite , 2006 .
[93] I. Sanders,et al. A model for planetesimal meltdown by 26Al and its implications for meteorite parent bodies , 2006 .
[94] A. Davis. Volatile Evolution and Loss , 2006 .
[95] J. Luck,et al. Zn and Cu isotopic variations in chondrites and iron meteorites: Early solar nebula reservoirs and parent-body processes , 2005 .
[96] S. Taylor,et al. Isotopic fractionation of iron, potassium, and oxygen in stony cosmic spherules; implications for heating histories and sources , 2005 .
[97] H. McSween,et al. Peak metamorphic temperatures in type 6 ordinary chondrites: An evaluation of pyroxene and plagioclase geothermometry , 2005 .
[98] J. Grossman,et al. Alkali elemental and potassium isotopic compositions of Semarkona chondrules , 2005 .
[99] C. Koeberl,et al. Potassium isotopic composition of Australasian tektites , 2004 .
[100] J. Bridges,et al. Chemical studies of L chondrites. VI: variations with petrographic type and shock-loading among equilibrated falls 1 1 Associate editor: G. Herzog , 2004 .
[101] E. Watson,et al. Isotope fractionation by chemical diffusion between molten basalt and rhyolite , 2003 .
[102] K. Lodders. Solar System Abundances and Condensation Temperatures of the Elements , 2003 .
[103] D. Porcelli,et al. In search of lost planets – the paleocosmochemistry of the inner solar system , 2001 .
[104] G. Wasserburg,et al. Aluminum‐26 in calcium‐aluminum‐rich inclusions and chondrules from unequilibrated ordinary chondrites , 2001 .
[105] M. Bourot‐Denise,et al. The lack of potassium‐isotopic fractionation in Bishunpur chondrules , 2000 .
[106] A. Brearley,et al. Bleached chondrules: Evidence for widespread aqueous processes on the parent asteroids of ordinary chondrites , 2000 .
[107] A. Rubin. Petrologic, geochemical and experimental constraints on models of chondrule formation , 2000 .
[108] A. Jambon,et al. A simple chondritic model of Mars , 1999 .
[109] M. Kimura,et al. Hydrous and anhydrous alterations of chondrules in Kaba and Mokoia CV chondrites , 1998 .
[110] K. Hashizume,et al. Transportation of gaseous elements and isotopes in a thermally evolving chondritic planetesimal , 1998 .
[111] Gerald J. Wasserburg,et al. Mg diffusion in anorthite: implications for the formation of early solar system planetesimals , 1998 .
[112] B. J. Giletti,et al. Alkali diffusion in plagioclase feldspar , 1997 .
[113] B. Fegley,et al. An Oxygen Isotope Model for the Composition of Mars , 1997 .
[114] E. Scott,et al. Shock metamorphism of enstatite chondrites , 1997 .
[115] H. McSween,et al. Revised model calculations for the thermal histories of ordinary chondrite parent bodies , 1996 .
[116] G. Wasserburg,et al. Evidence for Widespread 26Al in the Solar Nebula and Constraints for Nebula Time Scales , 1996, Science.
[117] R. Yund,et al. Interphase boundary diffusion of oxygen and potassium in K-feldspar/quartz aggregates , 1995 .
[118] R. Clayton,et al. Precise determination of the isotopic composition of potassium: Application to terrestrial rocks and lunar soils , 1995 .
[119] R. Clayton,et al. Potassium isotope cosmochemistry: Genetic implications of volatile element depletion , 1995 .
[120] R. Yund,et al. Grain boundary diffusion of oxygen, potassium and calcium in natural and hot-pressed feldspar aggregates , 1995 .
[121] R. Clayton. Oxygen Isotopes in Meteorites , 2003 .
[122] E. Horwitz,et al. A NOVEL STRONTIUM-SELECTIVE EXTRACTION CHROMATOGRAPHIC RESIN* , 1992 .
[123] D. Britt,et al. Black ordinary chondrites - An analysis of abundance and fall frequency , 1991 .
[124] K. Keil,et al. Shock metamorphism of ordinary chondrites , 1991 .
[125] J. Wasson,et al. Compositions of chondrites , 1988, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[126] R. Berman,et al. Internally consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgO-FeO-F , 1988 .
[127] J. Arkani‐Hamed,et al. Possible transport of volatile trace elements in meteorite parent bodies , 1987 .
[128] J. Arkani‐Hamed,et al. Possible transport of carbon in meteorite parent bodies , 1986 .
[129] M. Ghiorso. Activity/composition relations in the ternary feldspars , 1984 .
[130] Motoaki Sato,et al. Intrinsic oxygen fugacity measurements on seven chondrites, a pallasite, and a tektite and the redox state of meteorite parent bodies , 1984 .
[131] H. Wänke,et al. Alkali differentiation in LL-chondrites , 1983 .
[132] D. Sears,et al. The compositional classification of chondrites: II The enstatite chondrite groups , 1982 .
[133] N. Fujii,et al. Ordinary chondrite parent body - An internal heating model , 1982 .
[134] D. Bogard,et al. Ar-40/Ar-39 dating, Ar diffusion properties, and cooling rate determinations of severely shocked chondrites , 1980 .
[135] J. Minster,et al. 87Rb-87Sr chronology of enstatite meteorites , 1979 .
[136] J. Minster,et al. 87Rb-87Sr Dating of L Chondrites: Effects of Shock and Brecciation , 1979 .
[137] R. Wright,et al. 40Ar‐39Ar dating of collisional events in chondrite parent bodies , 1976 .
[138] P. Buseck,et al. Equilibration temperatures in enstatite chondrites , 1974 .
[139] B. Wood,et al. Garnet-orthopyroxene and orthopyroxene-clinopyroxene relationships in simple and complex systems , 1973 .
[140] R. T. Dodd. Metamorphism of the ordinary chondrites: A review , 1969 .
[141] John A. S. Adams,et al. The geochemistry of the alkali metals , 1964 .